气凝胶
材料科学
芳纶
制作
复合材料
多孔性
极限抗拉强度
纤维
保温
纳米纤维
热稳定性
表面张力
化学工程
图层(电子)
医学
替代医学
病理
物理
量子力学
工程类
作者
Xingxiang Qi,Gang Xiao,Chao Shen,Xiaotao Ma,Jiachao Ji,Yufei Huang,Yinan Yang,Shendong Yao,Zewan Lin,Jianguo Tang,Xiaoxu Zhao,Pibo Ma,Shichao Wang,Yuanlong Shao
标识
DOI:10.1002/smtd.202500921
摘要
Abstract Aerogel fiber is considered as outstanding thermal insulation and flexible material for next generation thermal management. However, conventional Supercritical Drying and Freeze Drying methods suffer from energy inefficiency and limited scalability. Herein, a combined solvent exchange and freeze‐thaw process is developed to suppress capillary force during ambient pressure drying (by replacing water with low surface tension solvent) while enhancing pore wall strength, enabling scalable fabrication of aramid nanofiber (ANF) aerogel fibers with micron/nanometer graded pores. The resultant fibers exhibit 84.3% porosity, 269.1 m 2 g −1 specific surface area, and 49.6 MPa tensile strength. Knitted textiles (80 × 15 cm) using kilometer‐scale multifilament fibers are fabricated, demonstrating a sustained thermal differential >5 °C under bidirectional extremes (either a 100 °C hot plate or −4 °C outdoors) at one‐third the areal density of cotton. This energy‐efficient scalable manufacturing strategy enables high performance thermal management for industrial and wearable applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI