P003 Predictors of differential treatment response between adalimumab and methotrexate in psoriasis: a causal forest analysis of the British Association of Dermatologists Biologics and Immunomodulators Register

阿达木单抗 甲氨蝶呤 医学 银屑病 语域(社会语言学) 联想(心理学) 皮肤病科 内科学 疾病 心理学 语言学 哲学 心理治疗师
作者
Wei Yann Haw,Oras Alabas,Matthew Sperrin,Giovanni Ciná,Ameen Abu‐Hanna,Richard B. Warren
出处
期刊:British Journal of Dermatology [Wiley]
卷期号:193 (Supplement_1)
标识
DOI:10.1093/bjd/ljaf085.031
摘要

Abstract While conventional comparative effectiveness studies report average treatment effects (ATEs), they may not capture the complex patterns of individual treatment responses. Causal forest, a tree-based machine learning approach that identifies patient-level factors influencing differential treatment responses, facilitates the estimation of conditional average treatment effects (CATEs) based on an individual’s covariates. Our aim was to identify patient characteristics that predict differential responses to adalimumab vs. methotrexate in psoriasis using causal forest analysis, and to characterize heterogeneous treatment effects across clinically relevant subgroups. The analysis compared biologic-naive adult patients who initiated either adalimumab or methotrexate between September 2007 and April 2024 across the UK and Republic of Ireland following the protocol recorded by the prospective registry the British Association of Dermatologists Biologics and Immunomodulators Register (BADBIR). Missing data were handled using one randomly selected dataset from multiple imputation by chained equations. A causal forest model was employed to estimate CATE for achieving Psoriasis Area and Severity Index (PASI) ≤ 2 during the treatment period, incorporating baseline patient characteristics and comorbidities. Variable importance analysis was used to identify key predictors of differential treatment response between adalimumab and methotrexate, with their effects quantified through best linear projection. In total 6810 patients (adalimumab 3974, methotrexate 2836) were included in the analysis. While adalimumab demonstrated superior overall effectiveness [ATE 0.41, 95% confidence interval (CI) 0.38–0.44], CATE analysis revealed substantial variation in individual treatment effects (median 0.42, interquartile range 0.37–0.47). Key predictors of differential treatment effects included male sex (absolute risk difference 0.15, P < 0.001). Effects were greater with increasing baseline PASI (0.007 per unit, P = 0.001), but lower with increasing age (−0.004 per year, P = 0.006) and weight (−0.003 per kg, P = 0.002). Subgroup analysis (CATE with 94% CI) showed higher treatment effects in younger patients (< 30 years: 0.46, 0.41–0.51 vs. > 70 years: 0.36, 0.34–0.39), female patients (0.45, 0.41–0.50 vs. male: 0.38, 0.35–0.41) and those with higher baseline PASI (> 20: 0.45, 0.41–0.49 vs. < 10: 0.41, 0.37–0.46). Increasing weight (< 90 kg: 0.43, 0.38–0.48 vs. > 120 kg: 0.40, 0.36–0.45) and comorbidity burden (no comorbidities: 0.44, 0.40–0.49 vs. ≥ 3 comorbidities: 0.37, 0.33–0.40) were associated with reduced treatment effects. The causal forest analysis reveals significant heterogeneity in responses to adalimumab and methotrexate, underscoring the impact of individual characteristics on treatment effectiveness. Factors such as age, sex, baseline PASI, weight and number of comorbidities are associated with differential treatment responses when prescribing adalimumab or methotrexate. These findings provide a data-driven framework to support personalized treatment decisions in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nini完成签到,获得积分10
1秒前
chz发布了新的文献求助10
1秒前
clear发布了新的文献求助10
1秒前
TW完成签到,获得积分10
1秒前
1111111完成签到,获得积分20
2秒前
2秒前
2425发布了新的文献求助10
2秒前
如意的剑鬼完成签到,获得积分10
2秒前
斯文人达完成签到,获得积分10
2秒前
橘子完成签到,获得积分10
2秒前
唐新惠完成签到 ,获得积分10
3秒前
3秒前
lu2025发布了新的文献求助10
3秒前
3秒前
Chuncheng发布了新的文献求助10
3秒前
脑袋空空完成签到,获得积分10
3秒前
諵十一完成签到,获得积分10
4秒前
4秒前
4秒前
甜甜秋荷完成签到,获得积分10
4秒前
4秒前
5秒前
chenyou完成签到,获得积分10
5秒前
YJ完成签到,获得积分10
5秒前
lost完成签到,获得积分10
5秒前
HP完成签到,获得积分10
5秒前
大海之滨完成签到,获得积分10
5秒前
沐慕完成签到,获得积分10
6秒前
Sakura完成签到,获得积分10
6秒前
风中涵山发布了新的文献求助30
6秒前
等于零完成签到 ,获得积分10
6秒前
mickchy完成签到,获得积分10
7秒前
可耐的Gamma完成签到,获得积分10
7秒前
Owen应助果果采纳,获得10
7秒前
YXJ完成签到,获得积分10
8秒前
vadfdfb完成签到,获得积分10
8秒前
旋转胡萝卜完成签到,获得积分10
8秒前
LISHAN发布了新的文献求助10
8秒前
Sophie完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477039
求助须知:如何正确求助?哪些是违规求助? 4578941
关于积分的说明 14365308
捐赠科研通 4506896
什么是DOI,文献DOI怎么找? 2469577
邀请新用户注册赠送积分活动 1456795
关于科研通互助平台的介绍 1430829