脊髓造影
卷积神经网络
医学
放射科
核(代数)
探测器
减法
光子计数
迭代重建
核医学
人工智能
计算机科学
物理
光学
数学
脊髓
精神科
组合数学
算术
作者
Ajay A. Madhavan,Peter G. Kranz,Michelle L Kodet,Lifeng Yu,Zhongxing Zhou,Timothy J. Amrhein
摘要
Photon counting detector CT myelography is an effective modality for the localization of spinal CSF leaks. The initial studies describing this technique employed a relatively smooth Br56 kernel. However, subsequent studies have demonstrated that the use of the sharpest quantitative kernel on photon counting CT (Qr89), particularly when denoised with techniques such as quantum iterative reconstruction or convolutional neural networks, enhances detection of CSF-venous fistulas. In this clinical report, we sought to determine whether the Qr89 kernel has utility in patients with dural tears, the other main type of spinal CSF leak. We performed a retrospective review of patients with dural tears diagnosed on photon counting CT myelography, comparing Br56, Qr89 denoised with quantum iterative reconstruction, and Qr89 denoised with a trained convolutional neural network. We specifically assessed spatial resolution, noise level, and diagnostic confidence in eight such cases, finding that the sharper Qr89 kernel outperformed the smoother Br56 kernel. This was particularly true when Qr89 was denoised using a convolutional neural network. Furthermore, in two cases, the dural tear was only seen on the Qr89 reconstructions and missed on the Br56 kernel. Overall, our study demonstrates the potential value of further optimizing post-processing techniques for photon counting CT myelography aimed at localizing dural tears.ABBREVIATIONS: CNN = convolutional neural network; CVF = CSF-venous fistula; DSM = digital subtraction myelography; EID = energy integrating detector; PCD = photon counting detector; QIR = quantum iterative reconstruction.
科研通智能强力驱动
Strongly Powered by AbleSci AI