Smart Coral Reef Monitoring System Using AI

珊瑚礁 计算机科学 暗礁 海洋学 地质学
作者
K. Latha,M. Manoj Kumar,S. Balaji,Y Aswin Lakshman
标识
DOI:10.1109/ic3iot60841.2024.10550404
摘要

The maintenance and management of coral reefs, crucial hubs of biodiversity, necessitate regular monitoring to track adjustments in their health. Conventional visible monitoring strategies are hard work-extensive and pricey, especially in faraway and inaccessible places. This task proposes a modern solution through harnessing the power of Artificial Intelligence (AI) and hydrophone technology to create a Smart Coral Reef Monitoring System. In the face of a couple of threats, consisting of weather trade, it is imperative to monitor coral reef health and the effectiveness of conservation tasks. Traditionally, coral reefs had been monitored and restored the usage of photo processing techniques, relying on exertions- extensive efforts. However, our proposed answer shifts the paradigm by way of using hydrophones to record the sounds emitted by means of the organisms inhabiting those reefs. Through the analysis of sound frequencies, a trained AI model can accurately predict the situation of the coral reefsBy shooting the underwater sounds produced by way of reef-associated organisms, scientists and bosses benefit from a deeper understanding of reef ecosystems and their health. Research has proven that wholesome coral reefs show off wonderful acoustic signatures compared to degraded ones, paving the way for the improvement of automated structures to distinguish among the two. Passive acoustic monitoring extends the scope of coral reef tracking past simply measuring coral growth. It allows complete statistics collection at the diverse groups comprising reef habitats, assisting in monitoring coral reef recuperation. Furthermore, acoustic enrichment, a revolutionary approach, complements current gear for coral reef recovery. Ongoing studies aim to discover its applicability across numerous reef habitats and geographical locations whilst assessing its effect on adult fishes, different reef organisms, and atmosphere tactics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情修杰完成签到 ,获得积分10
1秒前
我是老大应助Oliver采纳,获得10
2秒前
小田心发布了新的文献求助10
2秒前
cwm发布了新的文献求助10
3秒前
3秒前
529完成签到 ,获得积分10
3秒前
4秒前
beckywyn应助念念采纳,获得20
4秒前
Aran_Zhang应助Alex采纳,获得200
6秒前
夜瞳完成签到 ,获得积分10
6秒前
我是老大应助白羊采纳,获得10
6秒前
6秒前
7秒前
7秒前
陳LF发布了新的文献求助10
7秒前
8秒前
chenamy完成签到,获得积分10
8秒前
彭于彦祖应助为治采纳,获得50
9秒前
fafamimireredo完成签到,获得积分10
9秒前
9秒前
十三月落完成签到,获得积分10
10秒前
小马甲应助感动笑采纳,获得10
10秒前
10秒前
10秒前
11秒前
白芷当归发布了新的文献求助10
11秒前
务实玫瑰完成签到,获得积分20
12秒前
12秒前
852应助阿智采纳,获得10
12秒前
13秒前
ljm发布了新的文献求助10
13秒前
14秒前
拍不醒的薄荷完成签到,获得积分10
14秒前
weixiao发布了新的文献求助10
15秒前
Ruler完成签到 ,获得积分10
16秒前
17秒前
依灵完成签到,获得积分10
17秒前
Owen应助hgzz采纳,获得10
17秒前
18秒前
18秒前
高分求助中
诺和针® 32G 4mm 说明书(2023年2月23日) 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Machine Learning in Chemistry The Impact of Artificial Intelligence 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899162
求助须知:如何正确求助?哪些是违规求助? 3443870
关于积分的说明 10832058
捐赠科研通 3168556
什么是DOI,文献DOI怎么找? 1750721
邀请新用户注册赠送积分活动 846277
科研通“疑难数据库(出版商)”最低求助积分说明 789065