Creating machine learning models that interpretably link systemic inflammatory index, sex steroid hormones, and dietary antioxidants to identify gout using the SHAP (SHapley Additive exPlanations) method

激素 痛风 内科学 维生素D与神经学 医学 类固醇 内分泌学 全国健康与营养检查调查 生理学 人口 环境卫生
作者
Shunshun Cao,Yangyang Hu
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15 被引量:6
标识
DOI:10.3389/fimmu.2024.1367340
摘要

Background The relationship between systemic inflammatory index (SII), sex steroid hormones, dietary antioxidants (DA), and gout has not been determined. We aim to develop a reliable and interpretable machine learning (ML) model that links SII, sex steroid hormones, and DA to gout identification. Methods The dataset we used to study the relationship between SII, sex steroid hormones, DA, and gout was from the National Health and Nutrition Examination Survey (NHANES). Six ML models were developed to identify gout by SII, sex steroid hormones, and DA. The seven performance discriminative features of each model were summarized, and the eXtreme Gradient Boosting (XGBoost) model with the best overall performance was selected to identify gout. We used the SHapley Additive exPlanation (SHAP) method to explain the XGBoost model and its decision-making process. Results An initial survey of 20,146 participants resulted in 8,550 being included in the study. Selecting the best performing XGBoost model associated with SII, sex steroid hormones, and DA to identify gout (male: AUC: 0.795, 95% CI: 0.746- 0.843, accuracy: 98.7%; female: AUC: 0.822, 95% CI: 0.754- 0.883, accuracy: 99.2%). In the male group, The SHAP values showed that the lower feature values of lutein + zeaxanthin (LZ), vitamin C (VitC), lycopene, zinc, total testosterone (TT), vitamin E (VitE), and vitamin A (VitA), the greater the positive effect on the model output. In the female group, SHAP values showed that lower feature values of E2, zinc, lycopene, LZ, TT, and selenium had a greater positive effect on model output. Conclusion The interpretable XGBoost model demonstrated accuracy, efficiency, and robustness in identifying associations between SII, sex steroid hormones, DA, and gout in participants. Decreased TT in males and decreased E2 in females may be associated with gout, and increased DA intake and decreased SII may reduce the potential risk of gout.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
你怎么睡得着觉完成签到 ,获得积分10
2秒前
2秒前
zho应助科研通管家采纳,获得10
2秒前
俊秀的半雪完成签到,获得积分10
3秒前
3秒前
彪壮的小玉完成签到,获得积分0
4秒前
chengmin发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
yuyu发布了新的文献求助10
7秒前
hhhhh完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
龙龍龖龘发布了新的文献求助10
8秒前
8秒前
CodeCraft应助boshi采纳,获得10
9秒前
HEIKU应助刘秀的猫咪采纳,获得10
9秒前
Jasper应助清新的苑博采纳,获得10
11秒前
ysy发布了新的文献求助10
11秒前
12秒前
科研通AI5应助么么叽采纳,获得10
13秒前
爆米花应助鱼的宇宙采纳,获得10
13秒前
Christina完成签到,获得积分10
13秒前
kunkun发布了新的文献求助10
15秒前
可爱的函函应助chengmin采纳,获得10
15秒前
12rcli发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
ding应助专注的语堂采纳,获得10
17秒前
Muniira完成签到,获得积分10
18秒前
18秒前
若雨凌风应助DONGN采纳,获得20
19秒前
19秒前
19秒前
小二郎应助pengpeng采纳,获得30
19秒前
CMUVictor发布了新的文献求助10
20秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829930
求助须知:如何正确求助?哪些是违规求助? 3372490
关于积分的说明 10472794
捐赠科研通 3092018
什么是DOI,文献DOI怎么找? 1701700
邀请新用户注册赠送积分活动 818590
科研通“疑难数据库(出版商)”最低求助积分说明 770975