清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MSCLK: Multi-scale fully separable convolution neural network with large kernels for early diagnosis of Alzheimer’s disease

卷积(计算机科学) 计算机科学 可分离空间 比例(比率) 疾病 人工神经网络 人工智能 卷积神经网络 核(代数) 阿尔茨海默病 模式识别(心理学) 数学 医学 病理 纯数学 数学分析 地图学 地理
作者
Run-Feng Tian,Jia-Ni Li,Shao‐Wu Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124241-124241 被引量:1
标识
DOI:10.1016/j.eswa.2024.124241
摘要

Alzheimer's disease (AD) is identified as a central nervous system disease that exhibits irreversible degeneration, while mild cognitive impairment (MCI) is viewed as the preliminary stage of AD, and its pathogenesis is notably intricate. MCI contains two stages: early MCI (EMCI), and late MCI (LMCI). EMCI diagnosis can prevent EMCI from progressing to LMCI, and then to AD. Therefore, accurate diagnosis of EMCI/LMCI is crucial for developing the early intervention and treatment strategies of AD. Currently, most existing EMCI/LMCI diagnostic methods use single modality images, while different modality images carry different complementary information that helps for accurate diagnosis of EMCI/LMCI, and the lesion area is usually not limited to a single brain area, which involves multiple regions. In this case, conventional convolution operations cannot be able to accurately extract the pathological features of AD. In this work, we propose a novel Multi-scale fully Separable Convolution neural network with Large Kernels (MSCLK) method to diagnose early Alzheimer's disease with structural Magnetic Resonance Imaging (sMRI) images. MSCLK mainly consists of the multi-scale 3D fully separable convolution modules and the deep metric learning module. The multi-scale convolution that contains both small and large kernels is used to effectively capture the discrimination features of different scale acceptance domains. 3D fully separable convolution is used to reduce parameters and overfitting. The deep metric learning is used to learn hard samples that are similar but belong to different classes. We also propose a variant method of MSCLK (called MSCLK-Fusion MRI and PET, MSCLK-FMP) by adding the pixel-level fusion module and feature-level fusion module into the MSCLK framework to integrate the sMRI image and the Positron Emission Computed Tomography (PET) image for further improving the accuracy of EMCI vs. LMCI classification task. The pixel-level fusion is used to achieve early pixel-level fusion of sMRI and PET images, and the feature-level fusion is used to achieve high-dimensional feature-level fusion of sMRI and PET images. Experimental results on the ADNI database show that the performance of our MSCLK and MSCLK-FMP are superior to other state-of-the-art methods. The accuracy of MSCLK achieves 98.89%, 95.97%, 96.39% and 98.76% for AD vs. EMCI, AD vs. LMCI, EMCI vs. NC and LMCI vs. NC classification tasks, respectively, and MSCLK-FMP achieves 93.93% for EMCI vs. LMCI classification task, indicating that MSCLK/MSCLK-FMP can be effectively used for diagnosing MCI patients. Moreover, our MSCLK-FMP is capable of pinpointing key brain areas involved in the pathological progression of MCI, such as the Temporal_Inf, the Hippocampus, the Precuneus, the Precentral, and the Thalamus. These findings contribute to uncovering the early onset of AD pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rita应助范振杰采纳,获得10
9秒前
Owen应助Bryan采纳,获得10
16秒前
Tina完成签到 ,获得积分10
20秒前
雪花完成签到 ,获得积分10
20秒前
21秒前
24秒前
28秒前
清秀的怀蕊完成签到 ,获得积分10
30秒前
203040发布了新的文献求助10
32秒前
迷路向松完成签到,获得积分10
33秒前
huhu发布了新的文献求助10
34秒前
Akim应助xun采纳,获得10
43秒前
45秒前
北斗HH完成签到,获得积分10
56秒前
鸠摩智完成签到,获得积分10
58秒前
范振杰完成签到,获得积分20
1分钟前
1分钟前
xun发布了新的文献求助10
1分钟前
缥缈火车完成签到,获得积分10
1分钟前
闪闪的谷梦完成签到 ,获得积分10
1分钟前
wanci应助xun采纳,获得10
1分钟前
ys1008完成签到,获得积分10
1分钟前
真的OK完成签到,获得积分10
1分钟前
Drizzle完成签到,获得积分10
1分钟前
文献蚂蚁完成签到,获得积分10
1分钟前
洋芋饭饭完成签到,获得积分10
1分钟前
1分钟前
haralee完成签到 ,获得积分10
1分钟前
微卫星不稳定完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
马婷婷完成签到,获得积分10
2分钟前
谭凯文完成签到 ,获得积分10
2分钟前
2分钟前
doctorbin完成签到 ,获得积分10
3分钟前
3分钟前
ding应助文天采纳,获得10
3分钟前
Singularity完成签到,获得积分0
3分钟前
科研狗完成签到 ,获得积分10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300948
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626