Advancing electrochemical impedance analysis through innovations in the distribution of relaxation times method

计算机科学 电阻抗 软件 参数统计 探索性数据分析 数据科学 数据挖掘 电气工程 工程类 数学 程序设计语言 统计
作者
Adeleke Maradesa,Baptiste Py,Jake Huang,Yang Lu,Pietro Iurilli,Aleksander Mroziński,Ho Mei Law,Yuhao Wang,Zilong Wang,Jingwei Li,Shengjun Xu,Quentin Meyer,Jiapeng Liu,Claudio Brivio,A. G. Gavrilyuk,Kiyoshi Kobayashi,Antonio Bertei,Nicholas J. Williams,Chuan Zhao,Michael A. Danzer
出处
期刊:Joule [Elsevier BV]
卷期号:8 (7): 1958-1981 被引量:96
标识
DOI:10.1016/j.joule.2024.05.008
摘要

Electrochemical impedance spectroscopy (EIS) is widely used in electrochemistry, energy sciences, biology, and beyond. Analyzing EIS data is crucial, but it often poses challenges because of the numerous possible equivalent circuit models, the need for accurate analytical models, the difficulties of nonlinear regression, and the necessity of managing large datasets within a unified framework. To overcome these challenges, non-parametric models, such as the distribution of relaxation times (DRT, also known as the distribution function of relaxation times, DFRT), have emerged as promising tools for EIS analysis. For example, the DRT can be used to generate equivalent circuit models, initialize regression parameters, provide a time-domain representation of EIS spectra, and identify electrochemical processes. However, mastering the DRT method poses challenges as it requires mathematical and programming proficiency, which may extend beyond experimentalists' usual expertise. Post-inversion analysis of DRT data can be difficult, especially in accurately identifying electrochemical processes, leading to results that may not always meet expectations. This article examines non-parametric EIS analysis methods, outlining their strengths and limitations from theoretical, computational, and end-user perspectives, and provides guidelines for their future development. Moreover, insights from survey data emphasize the need to develop a large impedance database, akin to an impedance genome. In turn, software development should target one-click, fully automated DRT analysis for multidimensional EIS spectra interpretation, software validation, and reliability. Particularly, creating a collaborative ecosystem hinged on free software could promote innovation and catalyze the adoption of the DRT method throughout all fields that use impedance data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
最初完成签到,获得积分10
刚刚
刚刚
高嘉完成签到,获得积分10
1秒前
2秒前
浮游应助123采纳,获得10
2秒前
kate发布了新的文献求助10
2秒前
3秒前
4秒前
活泼的风华完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
努力奋斗发布了新的文献求助10
6秒前
镜缘发布了新的文献求助10
6秒前
6秒前
6秒前
情怀应助包容的绿蕊采纳,获得10
6秒前
小c应助宗熙江采纳,获得10
7秒前
sdzylx7发布了新的文献求助10
7秒前
慕青应助受伤金鑫采纳,获得10
8秒前
斯文败类应助闫111采纳,获得10
8秒前
9秒前
10秒前
11秒前
赵伟豪发布了新的文献求助10
11秒前
kate完成签到,获得积分10
11秒前
我是老大应助邱1111采纳,获得10
12秒前
小蘑菇应助隐形静芙采纳,获得10
12秒前
13秒前
14秒前
大胆擎苍完成签到 ,获得积分10
14秒前
方舸完成签到,获得积分10
15秒前
灵巧飞烟完成签到,获得积分10
16秒前
张凡完成签到 ,获得积分10
16秒前
17秒前
张倩发布了新的文献求助10
18秒前
19秒前
谨慎鞅完成签到,获得积分10
20秒前
wangwangxiao完成签到 ,获得积分10
20秒前
优美亦云完成签到,获得积分10
20秒前
云仄发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4831200
求助须知:如何正确求助?哪些是违规求助? 4136406
关于积分的说明 12802672
捐赠科研通 3878845
什么是DOI,文献DOI怎么找? 2133458
邀请新用户注册赠送积分活动 1153749
关于科研通互助平台的介绍 1052062