YOLO-DLHS-P: A Lightweight Behavior Recognition Algorithm for Captive Pigs

计算机科学 人工智能
作者
Changhua Zhong,Hao Wu,Junzhuo Jiang,Chaowen Zheng,Hong Song
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 104445-104462 被引量:16
标识
DOI:10.1109/access.2024.3414859
摘要

To meet the needs of embedded devices for model lightweight and high-precision recognition, this paper proposes a lightweight YOLO-DLHS-P model for pig behavior recognition based on the improved YOLOv8n model. Firstly, the C2f-DRB structure is introduced at the Backbone position, and the sizeable convolutional kernel is used to extend the receptive field to enhance the spatial perception ability of the model, and to enhance the network’s ability to capture spatial information while maintaining the number of learnable parameters and computational efficiency; The LSKA attention mechanism is then introduced to be integrated into the SPPF module to construct the SPPF-LSKA structure, which significantly improves the ability of the SPPF module to aggregate features at multiple scales; Then, the downsampling at the Neck position is optimised to the HWD algorithm, which reduces the spatial resolution of the feature map while retaining more useful information and reduces the uncertainty of the information compared with the downsampling method of the baseline model; finally, the Shape-IoU is used to replace the original CIoU, which significantly improves the detection efficiency and accuracy of the model without increasing the extra computational burden. After constructing the improved YOLO-DLHS model, the improved model is then pruned using the LAMP pruning scoring algorithm to obtain a lightweight YOLO-DLHS-P model. The experimental results show that the YOLO-DLHS model improves P, mAP@0.5, and mAP@0.5-0.95 by 4.39%, 1.68%, and 3.97%, respectively, compared to the YOLOv8n model. The YOLO-DLHS-P model improves P, mAP@0.5, and mAP@0.5-0.95 by 3.37%, 1.16%, and 2.11%, and the number of parameters, computation, and model occupancy are substantially reduced by 52.49%, 54.32%, and 49.33%, respectively. Moreover, the FPS of the YOLO-DLHS-P model reaches 79 frames, which has good real-time performance for pig behavior recognition. Therefore, the improved YOLO-DLHS-P in this paper is able to reduce the demand for hardware at the time of deployment under the premise of guaranteed accuracy and provides a lightweight behavioral recognition solution for the intelligent farming of captive pigs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
占听兰发布了新的文献求助10
3秒前
Mmmm发布了新的文献求助10
3秒前
3秒前
4秒前
柘苓完成签到 ,获得积分10
5秒前
6秒前
Jasper应助江边鸟采纳,获得20
6秒前
摆烂发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
纪你巴完成签到,获得积分10
8秒前
9秒前
wuming7890发布了新的文献求助10
9秒前
苗条的砖家完成签到,获得积分10
10秒前
11秒前
小王发布了新的文献求助30
12秒前
12秒前
13秒前
13秒前
14秒前
15秒前
星辰大海应助沙滩的收印采纳,获得10
15秒前
15秒前
15秒前
Sherlock完成签到,获得积分10
15秒前
呆呆完成签到,获得积分10
16秒前
科研通AI6应助YY采纳,获得10
17秒前
彩色的若颜发布了新的文献求助150
17秒前
17秒前
18秒前
seattletszd发布了新的文献求助10
18秒前
功夫熊猫发布了新的文献求助10
18秒前
斯文败类应助Leah采纳,获得10
20秒前
细腻半凡完成签到,获得积分10
22秒前
无心的紫山完成签到,获得积分10
22秒前
小王完成签到,获得积分10
22秒前
江边鸟发布了新的文献求助40
23秒前
白潇潇完成签到 ,获得积分10
24秒前
希望天下0贩的0应助Pises采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480459
求助须知:如何正确求助?哪些是违规求助? 4581574
关于积分的说明 14381235
捐赠科研通 4510152
什么是DOI,文献DOI怎么找? 2471660
邀请新用户注册赠送积分活动 1458083
关于科研通互助平台的介绍 1431812