g-C3N4/ZnWO4 nanocomposites as efficient and stable S-scheme photocatalysts for hydrogen evolution

材料科学 X射线光电子能谱 纳米复合材料 异质结 光催化 带隙 价(化学) 化学工程 分解水 价带 制氢 纳米技术 光化学 光电子学 催化作用 有机化学 工程类 化学
作者
Zhen Li,Zheng Yulian,Wen Li,Chunxu Chen,Jinfeng Zhang
出处
期刊:Materials Science in Semiconductor Processing [Elsevier BV]
卷期号:160: 107445-107445 被引量:4
标识
DOI:10.1016/j.mssp.2023.107445
摘要

The use of photocatalysis to decompose water and produce hydrogen (H2) is a promising green energy technology with numerous potential applications. In this study, the design of g-C3N4/ZnWO4 (CN/ZWO) accompanied by an “S-scheme” heterojunction mechanism is reported for the first time, along with a thorough investigation of their photocatalytic H2 evolution activity and mechanism. It was found that the CN/ZWO nanocomposites effectively address the inherent issues of band gap defects, instability, and poor H2-evolving photocatalytic performance of pure CN. The CN/ZWO-0.15 in particular exhibited particularly high photocatalytic activity (1.195 mmol g−1 h−1), being 17.57 and 7.71 times more effective than pure CN and ZWO, respectively. In addition, the CN/ZWO-0.15 displayed good stability over a period of 12 h (four cycles) while maintaining its high activity. The presence of the nanocomposites was confirmed using TEM and in situ irradiated XPS (ISI-XPS), and the mechanism at the heterojunction was determined to be the S-scheme via ISI-XPS, EPR and theoretical calculations. The S-scheme mechanism involves the effective utilization of the valence-conduction band gap width of the system and the efficient photoinduced charge separation, and is believed to be responsible for the superior H2 release ability of the nanocomposites. This work presents a novel approach involving an S-scheme heterojunction to overcome the intrinsic defects of CN-based photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
付悦完成签到,获得积分10
刚刚
上浮水母完成签到,获得积分10
1秒前
随遇而安应助四夕采纳,获得10
2秒前
Mengg完成签到,获得积分10
2秒前
2秒前
顺利的寄松完成签到,获得积分20
3秒前
3秒前
5秒前
酷波er应助Rosin采纳,获得200
5秒前
博修发布了新的文献求助10
5秒前
优美丹雪发布了新的文献求助10
5秒前
applepie发布了新的文献求助10
5秒前
科研通AI5应助MTF采纳,获得10
6秒前
傻瓜子完成签到,获得积分20
6秒前
哆啦梦发布了新的文献求助10
7秒前
songlf23发布了新的文献求助10
9秒前
害羞的伊发布了新的文献求助10
10秒前
Ava应助晨曦采纳,获得10
11秒前
知更鸟发布了新的文献求助10
12秒前
NSS完成签到,获得积分10
12秒前
田様应助博修采纳,获得30
12秒前
12秒前
子非鱼鱼完成签到,获得积分10
13秒前
Re完成签到,获得积分10
13秒前
FC发布了新的文献求助10
13秒前
TAO完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
聪明眼睛完成签到,获得积分10
19秒前
19秒前
20秒前
景行Elysia发布了新的文献求助10
21秒前
22秒前
hyjhhy发布了新的文献求助10
22秒前
科目三应助飞飞采纳,获得10
23秒前
24秒前
胸外科新手完成签到,获得积分20
24秒前
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787809
求助须知:如何正确求助?哪些是违规求助? 3333381
关于积分的说明 10261715
捐赠科研通 3049136
什么是DOI,文献DOI怎么找? 1673429
邀请新用户注册赠送积分活动 801915
科研通“疑难数据库(出版商)”最低求助积分说明 760419