已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

JAX-Fluids: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows

计算流体力学 解算器 计算机科学 压缩性 非线性系统 流体力学 可微函数 应用数学 湍流 偏微分方程 湍流模型 可压缩流 流体力学 机械 数学 物理 数学分析 量子力学 程序设计语言
作者
Deniz A. Bezgin,Aaron B. Buhendwa,Nikolaus A. Adams
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:282: 108527-108527 被引量:58
标识
DOI:10.1016/j.cpc.2022.108527
摘要

Physical systems are governed by partial differential equations (PDEs). The Navier-Stokes equations describe fluid flows and are representative of nonlinear physical systems with complex spatio-temporal interactions. Fluid flows are omnipresent in nature and engineering applications, and their accurate simulation is essential for providing insights into these processes. While PDEs are typically solved with numerical methods, the recent success of machine learning (ML) has shown that ML methods can provide novel avenues of finding solutions to PDEs. ML is becoming more and more present in computational fluid dynamics (CFD). However, up to this date, there does not exist a general-purpose ML-CFD package which provides 1) powerful state-of-the-art numerical methods, 2) seamless hybridization of ML with CFD, and 3) automatic differentiation (AD) capabilities. AD in particular is essential to ML-CFD research as it provides gradient information and enables optimization of preexisting and novel CFD models. In this work, we propose JAX-Fluids: a comprehensive fully-differentiable CFD Python solver for compressible two-phase flows. JAX-Fluids is intended for ML-supported CFD research. The framework allows the simulation of complex fluid dynamics with phenomena like three-dimensional turbulence, compressibility effects, and two-phase flows. Written entirely in JAX, it is straightforward to include existing ML models into the proposed framework. Furthermore, JAX-Fluids enables end-to-end optimization. I.e., ML models can be optimized with gradients that are backpropagated through the entire CFD algorithm, and therefore contain not only information of the underlying PDE but also of the applied numerical methods. We believe that a Python package like JAX-Fluids is crucial to facilitate research at the intersection of ML and CFD and may pave the way for an era of differentiable fluid dynamics. Program title: JAX-Fluids CPC Library link to program files: https://doi.org/10.17632/pzvkwn5s6p.1 Developer's repository link: https://github.com/tumaer/JAXFLUIDS Code Ocean capsule: https://codeocean.com/capsule/6819679 Licensing provisions: GNU GPLv3 Programming language: Python Supplementary material: Source code; Examples; Videos: Moving solid bodies, Taylor-Green vortex, Rising bubble, Shock-bubble interaction. Nature of problem: The compressible Navier-Stokes equations describe continuum-scale fluid flows. These flows often involve highly complex flow phenomena such as shocks, material interfaces, and turbulence. The intrinsic nonlinear dynamics render the numerical simulation of the these equations challenging. Machine learning provides novel avenues for describing partial differential equations. Machine learning models rely on gradient information provided by automatic differentiation and are often implemented in Python. In contrast, existing high-performance computational fluid dynamics codes are typically written in Fortran or C++ and do not offer inherent automatic differentiation capabilities. These discrepancies hinder the advance of machine-learning-supported computational fluid dynamics. Up to this day, a general-purpose fully-differentiable computational fluid dynamics solver for compressible two-phase flows is missing. Solution method: We introduce JAX-Fluids: a general-purpose three-dimensional fully-differentiable computational fluid dynamics solver for compressible two-phase flows. JAX-Fluids is a simulation framework intended for machine-learning-supported computational fluid dynamics research. Our framework is written entirely in JAX, a high-performance numerical computing library with automatic differentiation capabilities. We have used an object-oriented programming style and a modular design philosophy. This allows the straightforward exchange of numerical methods. We provide a wide variety of state-of-the-art high-order computational methods for compressible flows. The modularity of our framework additionally facilitates the integration of custom subroutines. We use the sharp-interface level-set method to model two-phase flows. The software package can easily be installed as a Python package. We have build the source code around the JAX NumPy API. This makes JAX-Fluids accessible and performant. JAX-Fluids runs on CPUs, GPUs, and TPUs. We use HDF5 in combination with XDMF for writing output quantities. The Python packages Haiku and Optax are used for implementation and training of machine learning methods. Additional comments including restrictions and unusual features: JAX-Fluids relies on open-source third-party Python libraries. These are automatically installed. In the current version, JAX-Fluids only runs on a single accelerator (CPU/GPU/TPU). Future versions will include support for parallel execution. JAX-Fluids has been tested on Linux and macOS operating systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cherry发布了新的文献求助10
2秒前
4秒前
我是老大应助橙城澄采纳,获得10
5秒前
王某完成签到 ,获得积分10
8秒前
8秒前
田様应助传统的戎采纳,获得10
9秒前
9秒前
Lidocaine发布了新的文献求助10
9秒前
北海北完成签到 ,获得积分10
11秒前
橄榄绿完成签到,获得积分10
12秒前
谨慎雪碧完成签到 ,获得积分10
13秒前
13秒前
14秒前
1203完成签到,获得积分10
17秒前
流年完成签到 ,获得积分10
18秒前
小小斌完成签到,获得积分10
18秒前
harry发布了新的文献求助10
19秒前
科研小满发布了新的文献求助10
20秒前
NSS完成签到,获得积分10
22秒前
coolkid应助Hopping采纳,获得20
26秒前
28秒前
30秒前
32秒前
瞬间de回眸完成签到 ,获得积分10
32秒前
传统的戎发布了新的文献求助10
32秒前
yu完成签到 ,获得积分10
34秒前
橙城澄发布了新的文献求助10
34秒前
哈哈环完成签到 ,获得积分10
35秒前
左祈发布了新的文献求助30
38秒前
科研小满完成签到,获得积分20
38秒前
沉默白猫完成签到 ,获得积分10
39秒前
42秒前
柚子完成签到 ,获得积分10
44秒前
平常的羊完成签到 ,获得积分10
45秒前
爱笑的之槐完成签到 ,获得积分10
45秒前
史克珍香完成签到 ,获得积分10
46秒前
英俊的铭应助科研通管家采纳,获得10
47秒前
Orange应助科研通管家采纳,获得10
47秒前
47秒前
打打应助科研通管家采纳,获得10
47秒前
高分求助中
Organic Chemistry 20086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4293714
求助须知:如何正确求助?哪些是违规求助? 3820163
关于积分的说明 11961948
捐赠科研通 3463234
什么是DOI,文献DOI怎么找? 1899642
邀请新用户注册赠送积分活动 947876
科研通“疑难数据库(出版商)”最低求助积分说明 850544