Delta radiomics modeling based on CTP for predicting hemorrhagic transformation after intravenous thrombolysis in acute cerebral infarction: an 8-year retrospective pilot study

溶栓 医学 无线电技术 回顾性队列研究 梗塞 脑梗塞 内科学 心脏病学 放射科 心肌梗塞 缺血
作者
Xiao Wu,Jinfang Yang,Xianqun Ji,Yingjian Ye,Ping Song,Lina Song,Peng An
出处
期刊:Frontiers in Neurology [Frontiers Media]
卷期号:16 被引量:1
标识
DOI:10.3389/fneur.2025.1545631
摘要

To explore the value of delta radiomics from cerebral CT perfusion (CTP) in predicting hemorrhagic transformation after intravenous thrombolysis for acute cerebral infarction (HT-ACI). Clinical and imaging data of 419 patients with acute cerebral infarction who underwent CTP after treatment between November 2016 and August 2024 were retrospectively collected. Based on post-thrombolysis cranial CT or MRI results, patients were divided into the HT-ACI group (114 cases) and the non-HT-ACI group (305 cases). The dataset was split into a training set and a test set in a 7:3 ratio based on time nodes. In the training set, regions of interest (ROI) within the cerebral infarction area on CTP images were delineated using 3D slicer software, and delta radiomic features were extracted. Hemodynamic parameters such as cerebral blood volume (CBV), cerebral blood flow (CBF), and time to peak (TTP) were obtained using CTP techniques. These were combined with baseline patient data (e.g., age, sex, NIHSS score, medical history) to establish various models for predicting HT-ACI through multivariable logistic regression analysis. The predictive performance of the models was compared using DeLong curves, clinical net benefit was assessed using decision curves, and model predictions were validated using the XGboost algorithm. These results were then validated in the test set, and a nomogram and calibration curve were constructed for clinical application. In the training set, significant differences were observed between the two groups in NIHSS score, pre-illness usually use of anticoagulants, age, infarction size, ADC difference, CBF, and Delta radscore (P < 0.05). The combined model [AUC 0.878, OR 0.0217, 95%CI 0.835-0.913] demonstrated superior predictive performance compared to the clinical model [AUC 0.725, OR 0.0310, 95%CI 0.670-0.775] and the imaging model [AUC 0.818, OR 0.0259, 95%CI 0.769-0.861]. This was confirmed by the XGboost algorithm, and decision curves confirmed the higher clinical net benefit of the combined model. Similar results were validated in the test set, and a novel nomogram was constructed to simplify the prediction process for HT-ACI. The combined model established based on delta radiomics from CTP may provide early insights into the hemodynamic status of acutely ischemic brain tissue, holding significant clinical importance for predicting HT-ACI. This method could offer a powerful imaging reference for clinical decision-making in patients with ACI, helping to reduce the risk of HT-ACI and improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TmpVoid完成签到,获得积分10
1秒前
Orange应助年轻的醉冬采纳,获得10
2秒前
草莓甜甜圈完成签到,获得积分10
2秒前
cici发布了新的文献求助20
3秒前
yeluoyezhi发布了新的文献求助10
3秒前
初晴完成签到 ,获得积分10
3秒前
5秒前
陈彦滨完成签到,获得积分10
6秒前
bkagyin应助天熙采纳,获得30
6秒前
7秒前
8秒前
肖福艳完成签到,获得积分10
8秒前
Wellnemo发布了新的文献求助10
9秒前
张张完成签到,获得积分10
9秒前
10秒前
capi发布了新的文献求助10
11秒前
12秒前
12秒前
张瑞宁发布了新的文献求助20
13秒前
13秒前
13秒前
pxc发布了新的文献求助10
13秒前
16秒前
16秒前
xiaowen发布了新的文献求助10
16秒前
江月完成签到,获得积分10
16秒前
Xiang发布了新的文献求助10
17秒前
18秒前
Wellnemo完成签到,获得积分10
18秒前
科研通AI5应助capi采纳,获得10
19秒前
CART汪完成签到,获得积分10
20秒前
21秒前
21秒前
李旭完成签到,获得积分20
21秒前
21秒前
丘比特应助长情母鸡采纳,获得10
21秒前
Akim应助千幻采纳,获得10
25秒前
25秒前
Zinc发布了新的文献求助10
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4148000
求助须知:如何正确求助?哪些是违规求助? 3684457
关于积分的说明 11641057
捐赠科研通 3378286
什么是DOI,文献DOI怎么找? 1854049
邀请新用户注册赠送积分活动 916395
科研通“疑难数据库(出版商)”最低求助积分说明 830278