Multiplex Visibility Graphs-Based Hybrid Deep Learning Method for Recognizing Pipeline Operation Conditions Using Operating Data

计算机科学 能见度 管道(软件) 人工智能 多路复用 机器学习 计算机视觉 操作系统 生物信息学 生物 光学 物理
作者
Li Zhang,Peng Wang,L. Liu,Jun Liu,Zhenghua Chen,Wei Dong,Changzhi Li,Lisheng Fan
标识
DOI:10.2523/iptc-25065-ms
摘要

Abstract Accurate recognition of system operating conditions is the basis for ensuring the safe and stable operation of oil and gas pipeline network systems. However, the existing operating condition recognition mainly relies on manual experience, which cannot dynamically track the changes of pipeline operating status, and the operating data stored in SCADA system lacks operating condition labels, which makes it difficult to explore the potential value of the data. In this work, a hybrid neural network model based on multiplex visibility graphs (MVG) is proposed for operating conditions classification. Firstly, the generative adversarial network algorithms (GANs) are adopted to increase the sample size of abnormal conditions and unsteady conditions to deal with sample imbalance in oil and gas pipeline systems, and the reliability of the generated samples is verified by comparing the similarity of probability distributions of the generated data with the real data. Then, the operating data are mapped into the MVG. Next, an attention mechanism-based graph convolutional neural network (GCN) model and a long short-term memory network (LSTM) model are successively employed in the MVG for capturing spatial and temporal features in the operating data. By introducing the attention mechanism into the GCN model, the model can adaptively discover signal nodes with higher correlation to the target operating conditions, thus improving the classification accuracy. Finally, the proposed model is validated with historical operating data from a real multi-product pipeline system. The results show that the proposed hybrid method can be effectively applied to binary classification of scheduled operations/sling pump (accuracy = 0.95) and multiple classification of pipeline startup and shutdown/sling pump/switching pump/pigging (accuracy = 0.72). The proposed model has the highest recognition performance compared to both the single GCN model and the hybrid model without the attention mechanism. The proposed method is universal and can be promoted and applied to oil pipeline systems and natural gas pipeline systems, which is of great significance for realizing online monitoring of pipeline operating conditions and guaranteeing the safe transportation of oil and gas pipelines. It also provides a new idea for future research on the recognition of small sample operating conditions in oil and gas pipeline systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助感动的海豚采纳,获得10
2秒前
充电宝应助pink采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
OU应助科研通管家采纳,获得10
9秒前
领导范儿应助灵巧的听枫采纳,获得10
9秒前
落雪无痕应助科研通管家采纳,获得20
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
木子川应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
gkads应助科研通管家采纳,获得10
9秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
ttw应助科研通管家采纳,获得10
10秒前
OU应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
今后应助ywj采纳,获得10
10秒前
孤独的大灰狼完成签到 ,获得积分0
12秒前
13秒前
15秒前
17秒前
17秒前
ywj完成签到,获得积分10
18秒前
orixero应助zxj采纳,获得10
19秒前
风语村发布了新的文献求助10
19秒前
解文哲发布了新的文献求助10
20秒前
可爱的函函应助DT采纳,获得10
20秒前
马畅完成签到 ,获得积分10
21秒前
Dopamine完成签到 ,获得积分10
22秒前
fangliu发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312