Fractional differential equations of Riemann–Liouville of variable order with anti-periodic boundary conditions

数学 数学分析 订单(交换) 变量(数学) 边值问题 微分方程 分数阶微积分 应用数学 经济 财务
作者
Zoubida Bouazza,Mohammed Said Souıd,Hatıra Günerhan,Hadi Rezazadeh
出处
期刊:Engineering Computations [Emerald Publishing Limited]
标识
DOI:10.1108/ec-01-2024-0029
摘要

Purpose The purpose of this paper is to investigate the existence, uniqueness and stability of solutions to a class of Riemann–Liouville fractional differential equations with anti-periodic boundary conditions of variable order (R-LFDEAPBCVO). The study utilizes standard fixed point theorems (FiPoTh) to establish the existence and uniqueness of solutions. Additionally, the Ulam-Hyers-Rassias (Ul-HyRa) stability of the considered problem is examined. The obtained results are supported by an illustrative example. This research contributes to the understanding of fractional differential equations with variable order and anti-periodic boundary conditions, providing valuable insights for further studies in this field. Design/methodology/approach This paper (1) defines the Riemann–Liouville fractional differential equations with anti-periodic boundary conditions of variable order (R-LFDEAPBCVO); (2) discusses the existence and uniqueness of solutions to these equations using standard FiPoTh; (3) investigates the stability of the considered problem using the Ul-HyRa stability concept (Ul-HyRa); (4) provides a detailed explanation of the design and methodology used to obtain the results and (5) supports the obtained results with a relevant example. Findings The authors confirm that no funds, grants or any other form of financial support were received during the preparation of this manuscript. Originality/value The originality/value of our paper lies in its contribution to the field of fractional differential equations. Specifically, we address the existence, uniqueness and stability of solutions to a class of Riemann–Liouville fractional differential equations with anti-periodic boundary conditions of variable order. By utilizing standard FiPoTh and investigating Ul-HyRa stability, we provide novel insights into this problem. The results obtained are supported by an example, further enhancing the credibility and applicability of your findings. Overall, our paper adds to the existing knowledge and understanding of Riemann–Liouville fractional differential equations with anti-periodic boundary conditions, making it valuable to the scientific community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仇剑封发布了新的文献求助10
刚刚
2秒前
兔子发布了新的文献求助10
2秒前
852应助Ra1n采纳,获得10
2秒前
2秒前
迷路的语柳关注了科研通微信公众号
4秒前
库里力完成签到,获得积分10
5秒前
5秒前
爆米花应助张永帅采纳,获得30
5秒前
aba发布了新的文献求助10
6秒前
6秒前
啊薇儿发布了新的文献求助10
8秒前
雪糕考研发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
wennnnn发布了新的文献求助10
9秒前
仇剑封完成签到,获得积分10
9秒前
9秒前
ding应助zzy采纳,获得10
10秒前
11秒前
嗨喽完成签到,获得积分10
12秒前
ARIA发布了新的文献求助10
13秒前
13秒前
黄康发布了新的文献求助30
14秒前
15秒前
无花果应助shinble采纳,获得10
17秒前
李健应助迷路的语柳采纳,获得30
17秒前
无花果应助守望者采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
aba完成签到,获得积分20
19秒前
SciGPT应助包容的映天采纳,获得10
19秒前
迅速凡霜完成签到,获得积分10
19秒前
讨厌胡萝卜完成签到,获得积分10
19秒前
张永帅发布了新的文献求助30
21秒前
我爱科研完成签到 ,获得积分10
22秒前
22秒前
乐乐应助wennnnn采纳,获得10
23秒前
24秒前
要发核心刊的阿爽完成签到,获得积分20
24秒前
25秒前
25秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4976962
求助须知:如何正确求助?哪些是违规求助? 4230567
关于积分的说明 13176335
捐赠科研通 4021005
什么是DOI,文献DOI怎么找? 2199934
邀请新用户注册赠送积分活动 1212565
关于科研通互助平台的介绍 1128730