PHFS: Progressive Hierarchical Feature Selection Based on Adaptive Sample Weighting

加权 特征选择 选择(遗传算法) 特征(语言学) 模式识别(心理学) 样品(材料) 人工智能 计算机科学 化学 色谱法 医学 语言学 放射科 哲学
作者
Hong Zhao,Jie Shi,Yang Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2025.3525643
摘要

Hierarchical feature selection is considered an effective technique to reduce the dimensionality of data with complex hierarchical label structures. Incorrect labels are a common and challenging issue in complex hierarchical data. However, the existing hierarchical methods often struggle to dynamically adapt to label noise and lack the flexibility to adjust sample weights. Therefore, their effectiveness in managing complex data with many classes and mitigating label noise is significantly limited. To address these issues, in this article, an adaptive sample weighting-based progressive hierarchical feature selection (PHFS) method was proposed, which dynamically adjusts the sample weights to focus on high-quality data. PHFS integrates progressive sample selection and hierarchical feature selection into a unified framework, thus enhancing its effectiveness in reducing the impact of label noise and achieving optimal performance. The progressive selection process is divided into initial and subsequent stages, focusing on correct and incorrect samples. In the initial stage, PHFS selects valuable and correct samples based on the adaptive weights calculated through hierarchical classification feedback, maximizing the guiding effect of the correctly labeled examples. In the subsequent stages, PHFS uses matrix factorization to preserve the structure of the correctly labeled samples, preventing the forgetting of the early selected samples and minimizing the negative impact of the mislabelled samples. The superiority of PHFS over 13 state-of-the-art methods was demonstrated by performing extensive experiments on eight real-world datasets, highlighting its effectiveness in reducing label noise and achieving optimal performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助zhangxinting0818采纳,获得10
刚刚
圆圆发布了新的文献求助10
刚刚
llllliu完成签到,获得积分10
1秒前
zhangjian完成签到,获得积分20
2秒前
侯MM发布了新的文献求助10
2秒前
2秒前
辣辣完成签到,获得积分10
2秒前
赘婿应助Kikisman采纳,获得30
2秒前
英姑应助黄音采纳,获得10
2秒前
慕青应助bk_tian采纳,获得10
3秒前
jovial完成签到,获得积分10
3秒前
3秒前
研友_Z7WQzZ发布了新的文献求助10
4秒前
席以亦发布了新的文献求助20
4秒前
5秒前
rrrr完成签到,获得积分20
5秒前
善学以致用应助zhangjian采纳,获得10
5秒前
5秒前
bkagyin应助XLL采纳,获得10
5秒前
WRT完成签到,获得积分10
6秒前
6秒前
6秒前
共享精神应助自觉的乘云采纳,获得10
6秒前
7秒前
7秒前
7秒前
宦邶完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
feezy发布了新的文献求助20
9秒前
9秒前
9秒前
晟sheng完成签到 ,获得积分10
10秒前
wxh发布了新的文献求助10
10秒前
WRT发布了新的文献求助10
10秒前
高翔发布了新的文献求助10
11秒前
11秒前
暖暖发布了新的文献求助10
11秒前
Lucas应助哦啦啦采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653416
求助须知:如何正确求助?哪些是违规求助? 4789940
关于积分的说明 15064113
捐赠科研通 4812066
什么是DOI,文献DOI怎么找? 2574236
邀请新用户注册赠送积分活动 1529924
关于科研通互助平台的介绍 1488633