亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YOLOv8-SC: Improving the YOLOv8 Network for Real-Time Detection of Automotive Coated Surface Defects

汽车工业 材料科学 曲面(拓扑) 汽车工程 计算机科学 工程类 航空航天工程 数学 几何学
作者
Ling Lin,Chuangman Zhu,Mingzhou Liu,Jing Hu,Xi Zhang,Maogen Ge
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adb05b
摘要

Abstract The detection of defects on automotive coated surfaces is of paramount importance to ensure the quality of automotive appearance. However, due to the challenges posed by the lack of sufficient samples of product-specific coated defects, the uneven number of species, and the difficulty of detecting defects in small targets due to the complex background of the body surface. The detection of defects on automotive coated surfaces still relies on experienced manual labor to a significant extent. To address these issues, Poisson fusion is employed to enhance the data for generating defect images, thereby mitigating the limitations of insufficient coated defect samples and an imbalanced distribution of defect species. Based on this, a new YOLOv8-SC defect detection model is proposed, in which the C2f-Star is used to replace the original C2f structure. This aims to improve the model's ability to extract defects of varying sizes in complex backgrounds, while reducing the number of model parameters and the amount of computation. The content-guided attention fusion (CGAFusion) module, situated before each detection head of the model, has been designed to enhance the model's capacity to extract defects of varying sizes and complexity. This is achieved through the adaptive fusion of low-level and high-level features. The proposed model's superiority in terms of detection metrics has been demonstrated through the use of example validation. The experiments were conducted on the enterprise dataset CPD-DET and the public dataset NEU-DET. The results demonstrated that the defective image generation and data enhancement method could significantly improve detection performance and have good generalization. The proposed YOLOv8-SC reduces the model parameters by 12.2% compared to the normal model. Additionally, the mean average precision (mAP) at 50% and 50-95% thresholds are enhanced by 4.7% and 2.3%, respectively. Furthermore, the accuracy of the model exhibits a discernible positive growth trend with an increase in the sample set size. The design of an automotive coated surface defect detection system is presented at last. When deployed in industrial settings, this system can facilitate the intelligent detection of coated defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Wfmmm采纳,获得10
13秒前
37秒前
38秒前
Wfmmm发布了新的文献求助10
42秒前
科研搬运工完成签到,获得积分10
44秒前
45秒前
zz发布了新的文献求助10
49秒前
科研通AI2S应助Wfmmm采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
乐观海云完成签到 ,获得积分10
1分钟前
juan完成签到 ,获得积分10
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
CUN完成签到,获得积分10
4分钟前
在水一方应助ukz37752采纳,获得10
4分钟前
4分钟前
4分钟前
kbcbwb2002完成签到,获得积分10
4分钟前
ukz37752发布了新的文献求助10
4分钟前
yzhilson完成签到 ,获得积分10
5分钟前
5分钟前
NexusExplorer应助科研通管家采纳,获得10
5分钟前
5分钟前
Wfmmm发布了新的文献求助10
6分钟前
ZYP应助一剑白采纳,获得10
6分钟前
你好完成签到 ,获得积分0
6分钟前
ZYP应助一剑白采纳,获得10
6分钟前
Whale完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
烟花应助刻苦的青文采纳,获得10
7分钟前
刻苦的青文完成签到,获得积分10
7分钟前
8分钟前
空2完成签到 ,获得积分0
8分钟前
杪夏二八完成签到 ,获得积分10
8分钟前
小蘑菇应助Wfmmm采纳,获得10
8分钟前
8分钟前
9分钟前
9分钟前
Wfmmm发布了新的文献求助10
9分钟前
null_完成签到 ,获得积分20
9分钟前
高分求助中
新中国出版事业的先驱胡愈之 1500
Essentials of Mental Health 800
Narcissistic Personality Disorder 700
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Parametric Random Vibration 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3853922
求助须知:如何正确求助?哪些是违规求助? 3396440
关于积分的说明 10596808
捐赠科研通 3118347
什么是DOI,文献DOI怎么找? 1718580
邀请新用户注册赠送积分活动 827620
科研通“疑难数据库(出版商)”最低求助积分说明 776926