Small Ligand-Involved Pickering Droplet Interface Controls Reaction Selectivity of Metal Catalysts

化学 选择性 催化作用 配体(生物化学) 接口(物质) 金属 皮克林乳液 化学工程 组合化学 有机化学 分子 受体 生物化学 吉布斯等温线 工程类 乳状液
作者
Jie Yang,Yue Sun,Hu Shi,Houbing Zou,Yabin Zhang,Xinxin Tian,Hengquan Yang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (7): 5984-5995 被引量:5
标识
DOI:10.1021/jacs.4c16128
摘要

Developing efficient methods to improve catalytic selectivity, particularly without sacrificing catalytic activity, is of paramount significance for chemical synthesis. In this work, we report a small ligand-involved Pickering droplet interface as a brand-new strategy to effectively regulate reaction selectivity of metal catalysts. It was found that small ligands such as polar arenes could engineer the surface structure of Pt catalysts that were assembled at Pickering droplet interfaces. Due to the strong hydrogen-bonding interactions with water, the polar arenes preferentially adsorbed with the water adlayer that covered Pt surfaces, forming water-mediated metal-organic interfaces on the Pickering emulsion droplets. Such an interface system displayed a significantly enhanced p-vinylaniline selectivity from 8.7 to 94.2% with an unreduced conversion in p-nitrostyrene hydrogenation. The selectivity was found to follow a negatively linear correlation with the bond length of the interfacial hydrogen bonds. Theoretical calculations revealed that the small arene ligands could closely array at the interface, which modulated the adsorption patterns of reactant/product molecules to prevent the C═C group from approaching Pt surfaces without suppressing their accessibility toward reactant molecules. Such a remarkable interfacial steric effect contributed to the efficient control of the hydrogenation selectivity. Our work provides an innovative strategy to modulate the surface structure of metal catalysts, opening a new venue to tune catalytic selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunnig盈完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
zhu发布了新的文献求助10
2秒前
zhong发布了新的文献求助30
3秒前
yibunvnv完成签到,获得积分10
3秒前
hooddy123459发布了新的文献求助10
3秒前
3秒前
霸气雅柔完成签到 ,获得积分20
4秒前
4秒前
4秒前
个性的夜天完成签到,获得积分10
4秒前
5秒前
demon王完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
瑾怡Zhang完成签到,获得积分10
6秒前
6秒前
ping发布了新的文献求助10
7秒前
霸气雅柔关注了科研通微信公众号
7秒前
8秒前
8秒前
好运连连完成签到 ,获得积分10
9秒前
xx发布了新的文献求助10
10秒前
saeda发布了新的文献求助30
11秒前
11秒前
11秒前
夏侯夏侯发布了新的文献求助10
14秒前
彭于晏应助王jj采纳,获得10
15秒前
在水一方应助boltos采纳,获得10
15秒前
15秒前
在水一方应助xx采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
summerer完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
府中园马完成签到,获得积分10
18秒前
田様应助braving采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662810
求助须知:如何正确求助?哪些是违规求助? 4844934
关于积分的说明 15101206
捐赠科研通 4821125
什么是DOI,文献DOI怎么找? 2580580
邀请新用户注册赠送积分活动 1534718
关于科研通互助平台的介绍 1493173