Advancing Source Apportionment of Atmospheric Particles: Integrating Morphology, Size, and Chemistry Using Electron Microscopy Technology and Machine Learning

分摊 形态学(生物学) 电子显微镜 纳米技术 化学 化学工程 环境科学 材料科学 物理 工程类 光学 生物 政治学 遗传学 法学
作者
Peng Zhao,Pusheng Zhao,Ziwei Zhan,Qili Dai,Gary Casuccio,Jian Gao,Jiang Li,Yanyun He,H.X. Qian,Xiaohui Bi,Jianhui Wu,Bin Jia,Xiao Liu,Yinchang Feng
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c10964
摘要

To further reduce atmospheric particulate matter concentrations, there is a need for a more precise identification of their sources. The SEM-EDS technology (scanning electron microscopy and energy-dispersive X-ray spectroscopy) can provide high-resolution imaging and detailed compositional analysis for particles with relatively stable physical and chemical properties. This study introduces an advanced source apportionment pipeline (RX model) that uniquely combines computer-controlled scanning electron microscopy with computer vision and machine learning to trace particle sources by integrating single-particle morphology, size, and chemical information. In the evaluation using a virtual data set with known source contributions, the RX model demonstrated high accuracy, with average errors of 0.60% for particle number and 1.97% for mass contribution. Compared to the chemical mass balance model, the RX model's accuracy and stability improved by 75.6 and 73.4%, respectively, and proved effective in tracing Fe-containing particles in the atmosphere of a steel city in China. This study indicates that particle morphology can serve as an effective feature for determining its source. The findings highlight the potential of electron microscopy technology coupled with computer vision and machine learning techniques to enhance our understanding of atmospheric pollution sources, offering valuable insights for PM health risk assessment and evidence-based policy-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WaitP应助负责的方盒采纳,获得10
刚刚
啦啦小牛完成签到 ,获得积分10
1秒前
1秒前
4秒前
4秒前
5秒前
蓝色发布了新的文献求助10
6秒前
万能图书馆应助落寞以寒采纳,获得10
8秒前
zhang完成签到,获得积分10
8秒前
KingYugene发布了新的文献求助10
10秒前
10秒前
11秒前
yuqinghui98发布了新的文献求助10
13秒前
冷静的孤风完成签到,获得积分10
13秒前
隐形曼青应助花凉采纳,获得10
14秒前
科研通AI5应助青衣采纳,获得10
14秒前
蓝色发布了新的文献求助10
15秒前
16秒前
刘璇关注了科研通微信公众号
17秒前
21秒前
cc发布了新的文献求助10
22秒前
天真千易发布了新的文献求助10
23秒前
慕青应助不成文采纳,获得10
23秒前
王先生完成签到 ,获得积分10
24秒前
蓝色发布了新的文献求助10
25秒前
29秒前
30秒前
鱼贝贝完成签到,获得积分10
31秒前
Orange应助蓝岳洋采纳,获得10
32秒前
余味应助外向宛菡采纳,获得10
32秒前
34秒前
Ann完成签到,获得积分10
36秒前
111完成签到,获得积分10
36秒前
zhuazhua完成签到 ,获得积分10
36秒前
Isaac完成签到 ,获得积分10
36秒前
蓝色发布了新的文献求助30
38秒前
39秒前
博修发布了新的文献求助30
39秒前
42秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321712
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680119
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445