Prediction of obstructive coronary artery disease using coronary calcification and epicardial adipose tissue assessments from CT calcium scoring scans

医学 冠状动脉疾病 心脏病学 冠状动脉钙 心外膜脂肪组织 钙化 脂肪组织 内科学 钙化积分 冠状动脉钙评分 放射科 钙质沉着 心外膜脂肪
作者
Ju Hwan Lee,Tao Hu,Michelle C. Williams,Ammar Hoori,Hao Wu,Justin N. Kim,David E. Newby,Robert Gilkeson,Sanjay Rajagopalan,David L. Wilson
出处
期刊:Journal of Cardiovascular Computed Tomography [Elsevier BV]
被引量:2
标识
DOI:10.1016/j.jcct.2025.01.007
摘要

Low-cost/no-cost non-contrast CT calcium scoring (CTCS) exams can provide direct evidence of coronary atherosclerosis. In this study, using features from CTCS images, we developed a novel machine learning model to predict obstructive coronary artery disease (CAD), as defined by the coronary artery disease-reporting and data system (CAD-RADS). This study analyzed 1324 patients from the SCOT-HEART trial who underwent both CTCS and CT angiography. Obstructive CAD was defined as CAD-RADS 4A-5, while CAD-RADS 0-3 were considered non-obstructive CAD. We analyzed clinical, Agatston-score-derived, and epicardial fat-omics features to predict obstructive CAD. The most predictive features were selected using elastic net logistic regression and used to train a CatBoost model. Model performance was evaluated using 1000 repeated five-fold cross-validation and survival analyses to predict major adverse cardiovascular event (MACE) and revascularization. Generalizability was assessed using an external validation set of 2316 patients for survival predictions. Among the 1324 patients, obstructive CAD was identified in 334 patients (25.2 ​%). Elastic net regression identified the top 14 features (5 clinical, 2 Agatston-score-derived, and 7 fat-omics). The proposed method achieved excellent performance for classifying obstructive CAD, with an AUC of 90.1 ​± ​0.9 ​% and sensitivity/specificity/accuracy of 83.5 ​± ​5.5 ​%/93.7 ​± ​1.9 ​%/82.4 ​± ​2.0 ​%. The inclusion of Agatston-score-derived and fat-omics features significantly improved classification performance. Survival analyses showed that both actual and predicted obstructive CAD significantly differentiated patients who experienced MACE and revascularization. We developed a novel machine learning model to predict obstructive CAD from non-contrast CTCS scans. Our findings highlight the potential clinical benefits of CTCS imaging in identifying patients likely to benefit from advanced imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢雷XIELei完成签到,获得积分10
1秒前
Jacky应助11011采纳,获得10
1秒前
深情安青应助hglhgl采纳,获得10
1秒前
1秒前
Liam发布了新的文献求助10
2秒前
机智胡萝卜完成签到,获得积分10
2秒前
2秒前
春春完成签到 ,获得积分10
2秒前
meimei完成签到,获得积分10
3秒前
研友_rLmNXn发布了新的文献求助10
3秒前
黄心怡完成签到,获得积分10
4秒前
李健的小迷弟应助123456采纳,获得10
4秒前
陌路完成签到,获得积分10
4秒前
LYB完成签到,获得积分20
4秒前
lin发布了新的文献求助10
4秒前
好爱science完成签到,获得积分10
5秒前
quan完成签到,获得积分10
6秒前
6秒前
666完成签到,获得积分10
7秒前
研友_rLmNXn完成签到,获得积分10
7秒前
yoyo完成签到 ,获得积分10
8秒前
时荒发布了新的文献求助10
8秒前
9秒前
heypee完成签到,获得积分10
9秒前
FrankW发布了新的文献求助10
9秒前
诚心晓露完成签到,获得积分10
9秒前
曾经绿兰完成签到,获得积分10
9秒前
斯文败类应助lin采纳,获得10
10秒前
Nuyoah完成签到,获得积分10
10秒前
123456完成签到,获得积分10
10秒前
知榕完成签到,获得积分10
11秒前
btyjs完成签到,获得积分10
11秒前
11秒前
Liam完成签到,获得积分10
12秒前
leclerc完成签到,获得积分10
13秒前
郑友盛完成签到 ,获得积分10
13秒前
13秒前
快乐乐松完成签到,获得积分20
13秒前
怜南完成签到,获得积分10
15秒前
邬不污完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5282438
求助须知:如何正确求助?哪些是违规求助? 4436450
关于积分的说明 13809099
捐赠科研通 4317015
什么是DOI,文献DOI怎么找? 2369541
邀请新用户注册赠送积分活动 1364917
关于科研通互助平台的介绍 1328426