亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stock Price Prediction Using CNN-BiLSTM-Attention Model

计算机科学 卷积神经网络 人工智能 库存(枪支) 股票价格 循环神经网络 深度学习 股票市场指数 人工神经网络 机器学习 模式识别(心理学) 股票市场 系列(地层学) 机械工程 古生物学 工程类 生物
作者
Jilin Zhang,Lishi Ye,Yongzeng Lai
出处
期刊:Mathematics [MDPI AG]
卷期号:11 (9): 1985-1985 被引量:71
标识
DOI:10.3390/math11091985
摘要

Accurate stock price prediction has an important role in stock investment. Because stock price data are characterized by high frequency, nonlinearity, and long memory, predicting stock prices precisely is challenging. Various forecasting methods have been proposed, from classical time series methods to machine-learning-based methods, such as random forest (RF), recurrent neural network (RNN), convolutional neural network (CNN), Long Short-Term Memory (LSTM) neural networks and their variants, etc. Each method can reach a certain level of accuracy but also has its limitations. In this paper, a CNN-BiLSTM-Attention-based model is proposed to boost the accuracy of predicting stock prices and indices. First, the temporal features of sequence data are extracted using a convolutional neural network (CNN) and bi-directional long and short-term memory (BiLSTM) network. Then, an attention mechanism is introduced to fit weight assignments to the information features automatically; and finally, the final prediction results are output through the dense layer. The proposed method was first used to predict the price of the Chinese stock index—the CSI300 index and was found to be more accurate than any of the other three methods—LSTM, CNN-LSTM, CNN-LSTM-Attention. In order to investigate whether the proposed model is robustly effective in predicting stock indices, three other stock indices in China and eight international stock indices were selected to test, and the robust effectiveness of the CNN-BiLSTM-Attention model in predicting stock prices was confirmed. Comparing this method with the LSTM, CNN-LSTM, and CNN-LSTM-Attention models, it is found that the accuracy of stock price prediction is highest using the CNN-BiLSTM-Attention model in almost all cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
Crystal发布了新的文献求助30
54秒前
爆米花应助Crystal采纳,获得10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
看不了一点文献应助Nan采纳,获得10
2分钟前
怕黑乌冬面完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
Nan发布了新的文献求助10
3分钟前
jader发布了新的文献求助30
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
wss123发布了新的文献求助10
3分钟前
3分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
李爱国应助科研通管家采纳,获得10
4分钟前
wss123完成签到,获得积分10
4分钟前
在水一方应助矢思然采纳,获得10
4分钟前
贪玩的万仇完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
矢思然发布了新的文献求助10
5分钟前
5分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
swordlee发布了新的文献求助100
6分钟前
7分钟前
顾矜应助会飞的蜗牛采纳,获得10
7分钟前
7分钟前
ECD发布了新的文献求助10
7分钟前
ceeray23应助科研通管家采纳,获得10
8分钟前
看不了一点文献应助LIXI采纳,获得10
8分钟前
ECD完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5408008
求助须知:如何正确求助?哪些是违规求助? 4525395
关于积分的说明 14101764
捐赠科研通 4439320
什么是DOI,文献DOI怎么找? 2436707
邀请新用户注册赠送积分活动 1428692
关于科研通互助平台的介绍 1406795