Measuring latent combinational novelty of technology

新颖性 计算机科学 人工智能 组合逻辑 新知识检测 算法 神学 逻辑门 哲学
作者
Xiaoling Sun,Chen Na,Kun Ding
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118564-118564 被引量:6
标识
DOI:10.1016/j.eswa.2022.118564
摘要

• A measure is proposed to identify the combinational novelty of technology. • The measure shows better performance compared to single indicators using AI data. • High-novelty/high-conventional patents have a relatively higher future impact. Novelty is considered an important driving force of scientific and technological innovation. How to measure novelty has drawn much attention in recent years. The comprehensive measurement of the novelty could help to identify novel patents as soon as possible and reduce the risk of delayed identification of important technologies. This research introduces a comprehensive measure that could identify novel technology using IPC in patents from a knowledge combinational perspective. The existing methods for measuring novelty commonly use the co-occurrence of knowledge pairwise combinations and identify novelty by assessing the new pairings that did not exist. Besides considering the number of direct co-occurrence of knowledge combinations to evaluate novelty, the proposed method integrates indirect link probability and hierarchical similarity in the IPC tree structure. The feasibility of the measure is demonstrated by applying it to the patent data in the field of Artificial Intelligence (AI). Compared with previous measures, the proposed measure could capture the latent distance between knowledge pairings and identify more novel combinations. The relationship between novelty and citations in the AI field shows that: High-novelty/high-conventional patents have a higher average number of citations and a higher probability of being “hit” patents, indicating that novel patents build on prior knowledge have a relatively higher future impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻地坛发布了新的文献求助10
刚刚
刚刚
巧克力上瘾的修狗完成签到,获得积分10
1秒前
1秒前
陆乙发布了新的文献求助10
2秒前
2秒前
FashionBoy应助彭shuai采纳,获得10
3秒前
3秒前
一一发布了新的文献求助10
4秒前
4秒前
大个应助kisaki采纳,获得10
4秒前
yxq发布了新的文献求助10
5秒前
华仔应助端庄新柔采纳,获得10
5秒前
5秒前
淮安张伟-本人完成签到,获得积分10
5秒前
李李李发布了新的文献求助10
5秒前
5秒前
欣欣子发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
阿清发布了新的文献求助10
9秒前
9秒前
9秒前
勤恳青槐发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
青年才俊发布了新的文献求助10
11秒前
12秒前
李思松发布了新的文献求助10
12秒前
飞快的奄完成签到,获得积分10
12秒前
Akim应助一一采纳,获得10
12秒前
empty发布了新的文献求助10
13秒前
幻月完成签到,获得积分10
13秒前
彭shuai发布了新的文献求助10
14秒前
14秒前
仁爱的帽子完成签到,获得积分10
15秒前
微笑的蝴蝶关注了科研通微信公众号
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605988
求助须知:如何正确求助?哪些是违规求助? 4690446
关于积分的说明 14863762
捐赠科研通 4703200
什么是DOI,文献DOI怎么找? 2542382
邀请新用户注册赠送积分活动 1507911
关于科研通互助平台的介绍 1472161