Enhanced CT-based radiomics predicts pathological complete response after neoadjuvant chemotherapy for advanced adenocarcinoma of the esophagogastric junction: a two-center study

医学 无线电技术 放射科 神经组阅片室 新辅助治疗 介入放射学 腺癌 内科学 肿瘤科
作者
Wenpeng Huang,Liming Li,Siyun Liu,Yunjin Chen,Chenchen Liu,Yijing Han,Fang Wang,Pengchao Zhan,Huiping Zhao,Jing Li,Jianbo Gao
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1186/s13244-022-01273-w
摘要

Abstract Purpose This study aimed to develop and validate CT-based models to predict pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) for advanced adenocarcinoma of the esophagogastric junction (AEG). Methods Pre-NAC clinical and imaging data of AEG patients who underwent surgical resection after preoperative-NAC at two centers were retrospectively collected from November 2014 to September 2020. The dataset included training ( n = 60) and external validation groups ( n = 32). Three models, including CT-based radiomics, clinical and radiomics–clinical combined models, were established to differentiate pCR (tumor regression grade (TRG) = grade 0) and nonpCR (TRG = grade 1–3) patients. For the radiomics model, tumor-region-based radiomics features in the arterial and venous phases were extracted and selected. The naïve Bayes classifier was used to establish arterial- and venous-phase radiomics models. The selected candidate clinical factors were used to establish a clinical model, which was further incorporated into the radiomics–clinical combined model. ROC analysis, calibration and decision curves were used to assess the model performance. Results For the radiomics model, the AUC values obtained using the venous data were higher than those obtained using the arterial data (training: 0.751 vs. 0.736; validation: 0.768 vs. 0.750). Borrmann typing, tumor thickness and degree of differentiation were utilized to establish the clinical model (AUC-training: 0.753; AUC-validation: 0.848). The combination of arterial- and venous-phase radiomics and clinical factors further improved the discriminatory performance of the model (AUC-training: 0.838; AUC-validation: 0.902). The decision curve reflects the higher net benefit of the combined model. Conclusion The combination of CT imaging and clinical factors pre-NAC for advanced AEG could help stratify potential responsiveness to NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
动漫大师发布了新的文献求助10
3秒前
疯狂的炒米粉完成签到 ,获得积分10
3秒前
2017完成签到,获得积分10
4秒前
5秒前
栾小鱼完成签到,获得积分10
5秒前
成666发布了新的文献求助10
5秒前
5秒前
眨眼完成签到,获得积分10
5秒前
俏皮诺言完成签到,获得积分10
6秒前
7秒前
8秒前
Bluebulu完成签到,获得积分10
8秒前
LY应助微笑面对采纳,获得10
10秒前
猪猪hero发布了新的文献求助10
11秒前
打打应助略略略采纳,获得10
12秒前
赵萌发布了新的文献求助10
13秒前
14秒前
成666完成签到,获得积分10
14秒前
大男完成签到,获得积分10
15秒前
LA关注了科研通微信公众号
16秒前
卢小白完成签到,获得积分10
17秒前
18秒前
默默发布了新的文献求助10
18秒前
20秒前
鳗鱼白风完成签到,获得积分20
21秒前
无奈天亦完成签到,获得积分10
21秒前
dawang发布了新的文献求助10
21秒前
北海未暖完成签到,获得积分10
23秒前
23秒前
魔幻完成签到,获得积分10
23秒前
整齐乐荷完成签到,获得积分10
24秒前
李博士发布了新的文献求助10
25秒前
25秒前
潇湘完成签到 ,获得积分10
25秒前
qqqyy完成签到,获得积分10
26秒前
26秒前
26秒前
zl发布了新的文献求助10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353589
关于积分的说明 10366149
捐赠科研通 3069892
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304