Development of a slope digital twin for predicting temporal variation of rainfall-induced slope instability using past slope performance records and monitoring data

边坡稳定性 不稳定性 地质学 边坡破坏 理论(学习稳定性) 边坡稳定性分析 数字高程模型 边坡稳定概率分类 安全系数 岩土工程 孔隙水压力 遥感 计算机科学 机械 物理 机器学习
作者
Xin Liu,Yu Wang,R.C.H. Koo,J.S.H. Kwan
出处
期刊:Engineering Geology [Elsevier BV]
卷期号:308: 106825-106825 被引量:29
标识
DOI:10.1016/j.enggeo.2022.106825
摘要

A slope digital twin is a virtual slope model that is able to continuously, even in real-time, learn from actual observations (e.g., monitoring data, slope performance records, and site investigation data) obtained from its physical counterpart to enhance the performance of the slope model. This study proposes a practical framework to develop a slope digital twin and describes its application to predict the temporal variation of rainfall-induced slope instability of a real slope in Hong Kong. When compared with a conventional slope model that remains unchanged, the proposed slope digital twin combines monitoring data (e.g., data on rainfall and pore water pressure in the slope) and slope survival records to probabilistically update the model. Specifically, the most suitable model settings are selected, and both the hydraulic and strength parameters of the soils are updated, thereby decreasing the associated uncertainties. The updated slope model can predict pore water pressure responses of a target rainfall consistent with the actual measurements. Furthermore, the model can be used to predict the temporal variation of slope stability (e.g., by using a factor of safety with quantified uncertainty or slope failure probability) during the target rainfall. Because the monitoring data and past slope survival records are incorporated in the model updating, the proposed slope digital twin enhances the prediction of soil hydraulic responses and slope stability. The predicted temporal variation of slope stability agrees well with the observed slope failure induced by an extreme rainstorm in June of 2008. • A practical framework for developing digital twin of a real slope. • Slope model updating based on monitoring data and slope survival records. • Identification of soil strength and hydraulic parameters using Bayesian method. • Prediction of time-variant soil hydraulic responses and slope stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依依发布了新的文献求助10
1秒前
沉静逍遥发布了新的文献求助10
2秒前
君君发布了新的文献求助10
2秒前
2秒前
mubiguo完成签到,获得积分10
4秒前
zho发布了新的文献求助10
4秒前
4秒前
Harlotte发布了新的文献求助10
4秒前
5秒前
漏晨发布了新的文献求助10
5秒前
5秒前
在水一方应助青豆采纳,获得10
6秒前
七个丸子完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
椰子完成签到 ,获得积分10
8秒前
8秒前
LL666完成签到 ,获得积分10
9秒前
9秒前
所所应助依依采纳,获得10
9秒前
愉快的犀牛完成签到 ,获得积分10
9秒前
月月发布了新的文献求助10
9秒前
儒雅猕猴桃完成签到 ,获得积分10
10秒前
CR完成签到 ,获得积分10
10秒前
sdfasde完成签到,获得积分10
11秒前
11秒前
瓦猫完成签到,获得积分10
11秒前
zl12345发布了新的文献求助10
11秒前
漏晨完成签到,获得积分10
12秒前
12秒前
科研小越发布了新的文献求助10
12秒前
zzx完成签到,获得积分10
13秒前
小小鱼儿完成签到,获得积分10
13秒前
wanci应助memory采纳,获得10
14秒前
bkagyin应助小了白了兔采纳,获得10
14秒前
辛夷完成签到,获得积分10
15秒前
惜曦完成签到 ,获得积分10
15秒前
搜集达人应助Harlotte采纳,获得10
16秒前
Maxpan发布了新的文献求助10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808644
求助须知:如何正确求助?哪些是违规求助? 3353384
关于积分的说明 10364826
捐赠科研通 3069560
什么是DOI,文献DOI怎么找? 1685660
邀请新用户注册赠送积分活动 810653
科研通“疑难数据库(出版商)”最低求助积分说明 766233