微观结构
电介质
材料科学
烧结
陶瓷
放松(心理学)
分析化学(期刊)
矿物学
复合材料
化学
心理学
社会心理学
光电子学
色谱法
作者
Chen Ge,Jialiang Zhang,Wentao Hao,Tan Yongqiang,Peng Zheng,Shoufu Shao
摘要
摘要 利用固相反应法在不同烧结温度条件下制备了一系列(Na1/2Bi1/2)Cu3Ti4O12(NBCTO)陶瓷样品,研究了它们的晶体结构、微观组织结构、介电性质和复阻抗及其随温度的变化. 实验发现NBCTO陶瓷所呈现出的电学性质与CaCu3Ti4O12陶瓷相应的电学性质非常类似. 烧结温度为990℃至1060℃范围的NBCTO陶瓷样品室 关键词: 高介电材料 / 介电性质 / 复阻抗 / 内阻挡层电容 Abstract A series of (Na1/2Bi1/2)Cu3Ti4O12 (NBCTO) ceramics were prepared by solid-state reaction at different sintering temperatures. The crystal structure,microstructures,dielectric properties and complex impedance and the corresponding temperature dependences were investigated. It has been revealed that the NBCTO ceramics has quite similar electrical properties with those previously found in CaCu3Ti4O12ceramics. The NBCTO ceramics prepared at sintering temperatures between 990℃ and 1060℃ exhibit low-frequency ε′ larger than 10000 at room temperature. With the increasing of sintering temperature,both ε′ and the grain size in microstructure first increase and then decrease. Although large difference is observed in their dielectric properties and complex impedance for the various NBCTO ceramics,there exist some common features. Whereas only one dielectric relaxation is seen at room temperature or lower temperatures,two are seen in the dielectric spectra within the measured frequency range of 40 Hz—10 MHz at higher temperatures. Keywords: high-k materials / dielectric properties / complex impedance / internal barrier layer capacitance 作者及机构信息 陈戈, 张家良, 郝文涛, 谭永强, 郑鹏, 邵守福 1. 山东大学物理系,济南 250100 基金项目: 国家重点基础研究发展计划(973)项目(批准号:2007CB607504),教育部“新世纪优秀人才支持计划”项目(批准号:NCET-06-0587)资助的课题. Authors and contacts Chen Ge, Zhang Jia-Liang, Hao Wen-Tao, Tan Yong-Qiang, Zheng Peng, Shao Shou-Fu 1. 山东大学物理系,济南 250100 参考文献 [1] [1] Zhao Y L,Jiao Z K,Cao G H 2003 Acta Phys. Sin. 52 1500 (in Chinese) [赵彦立、焦正宽、曹光旱 2003 物理学报 52 1500] [2] [2] Zhou X L,Du P Y 2005 Acta Phys. Sin. 54 354 (in Chinese) [周晓莉、杜丕一 2005 物理学报 54 354] [3] [3] Liu P,He Y,Li J,Zhu G Q,Bian X B 2007 Acta Phys. Sin. 56 5489 (in Chinese) [刘鹏、何颖、李俊、朱刚强、边小兵 2007 物理学报 56 5489] [4] [4] Subramanian M A,Li D,Duan N,Reisner B A,Sleight A W 2000 J. Solid State Chem. 151 323 [5] [5] Ramirez A P,Subramanian M A,Gardel M,Blumberg G,Li D,Vogt T,Shapiro S M 2000 Solid State Commun. 115 217 [6] [6] Holmes C C,Vogt T,Shapiro S M,Wakimoto S,Ramirez A P 2001 Science. 293 637 [7] [7] Sinclair D C,Adams T B,Morrison F D,West A R 2002 Appl.Phys. Lett. 80 2153 [8] [8] Adams T B,Sinclair D C,West A R 2002 Adv. Mater. (Weinheim,Ger.) 14 1321 [9] [9] Cohen M H,Neaton J B,He L,Vanderbilt D 2003 J. Appl. Phys. 94 3299 [10] ]Lunkenheimer P,Fichtl R,Ebbinghaus S G,Loidl A 2004 Phys. Rev. B 70 172102 [11] ]Fang T T,Shiau H K 2004 J. Am. Ceram. Soc. 87 2072 [12] ]Bender B A,Pan M J 2005 Mater. Sci. Eng. B 117 339 [13] ]Ni L,Chen X M,Liu X Q,Hou R Z 2006 Solid State Commun. 139 45 [14] ]Zhang L,Tang Z J 2004 Phys. Rev. B 70 174306 [15] ]Capsoni D,Bini M,Massarotti V,Chiodelli G,Mozzatic M C,Azzoni C B 2004 J. Solid State Chem. 177 4494 [16] ]Li J,Subramanian M A,Rosenfeld H D,Jones C Y,Toby B H,Sleight A W 2004 Chem. Mater. 16 5223 [17] ]Fang T T,Li T M,Hei H F 2006 Acta Mater. 54 2867 [18] ]Fang T T,Li T M 2007 J. Am. Ceram. Soc. 90 638 [19] ]Li M,Feteira A,Sinclair D C,West A R 2006 Appl. Phys. Lett. 88 232903 [20] ]Subramanian M A,Sleight A W 2002 Solid State Sci. 4 347 [21] ]Liu J J,Duan C G,Mei W N 2005 J. Appl. Phys. 98 093703 [22] ]Ferrarelli M C,Adams T B,Feterira A,Sinclair D C,West A R 2006 Appl. Phys. Lett. 89 212904 [23] ]Zuo R Q,Feng L X,Yan Y Y,Chen B,Cao G H 2007 Solid State Commun. 91 138 [24] ]Shao S F,Zhang J L,Zheng P,Zhong W L,Wang C L 2006 J. Appl. Phys. 99 086104 [25] ]Shao S F,Zheng P,Zhang J L,Niu X K,Wang C L,Zhong W L 2006 Acta Phys. Sin. 55 6661 (in Chinese) [邵守福、郑鹏、张家良、钮效鹍、王春雷、钟维烈 2006 物理学报 55 6661] [26] ]Zhang J L,Zheng P,Wang C L,Zhao M L,Li J C,Wang J F 2005 Appl. Phys. Lett. 87 142901 [27] ]Zhang J L,Zheng P,Shao S F,Su W B,Wang C L 2007 Ferroelectrics 356 85 施引文献
科研通智能强力驱动
Strongly Powered by AbleSci AI