A novel transfer learning framework for time series forecasting

计算机科学 杠杆(统计) 时间序列 集成学习 机器学习 系列(地层学) 学习迁移 人工智能 数据挖掘 算法 生物 古生物学
作者
Rui Ye,Qun Dai
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:156: 74-99 被引量:125
标识
DOI:10.1016/j.knosys.2018.05.021
摘要

Abstract Recently, many excellent algorithms for time series prediction issues have been proposed, most of which are developed based on the assumption that sufficient training data and testing data under the same distribution are available. However, in reality, time-series data usually exhibit some kind of time-varying characteristic, which may lead to a wide variability between old data and new data. Hence, how to transfer knowledge over a long time span, when addressing time series prediction issues, poses serious challenges. To solve this problem, in this paper, a hybrid algorithm based on transfer learning, Online Sequential Extreme Learning Machine with Kernels (OS-ELMK), and ensemble learning, abbreviated as TrEnOS-ELMK, is proposed, along with its precise mathematic derivation. It aims to make the most of, rather than discard, the adequate long-ago data, and constructs an algorithm framework for transfer learning in time series forecasting, which is groundbreaking. Inspired by the preferable performance of models ensemble, ensemble learning scheme is also incorporated into our proposed algorithm, where the weights of the constituent models are adaptively updated according to their performances on fresh samples. Compared to many existing time series prediction methods, the newly proposed algorithm takes long-ago data into consideration and can effectively leverage the latent knowledge implied in these data for current prediction. In addition, TrEnOS-ELMK naturally inherits merits of both OS-ELMK and ensemble learning due to its incorporation of the two techniques. Experimental results on three synthetic and six real-world datasets demonstrate the effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
传奇3应助BMM采纳,获得10
1秒前
2秒前
儒雅的天川完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助Murphy采纳,获得10
2秒前
小李发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
玛卡巴子完成签到,获得积分10
4秒前
don发布了新的文献求助10
4秒前
科研通AI5应助想去电影院采纳,获得10
4秒前
炸薯条发布了新的文献求助10
5秒前
5秒前
Zhangyw完成签到,获得积分10
5秒前
Arundel完成签到,获得积分20
5秒前
6秒前
圆锥香蕉举报11111求助涉嫌违规
6秒前
布鲁完成签到,获得积分10
6秒前
GXM发布了新的文献求助10
6秒前
天天快乐应助帅哥采纳,获得10
6秒前
范珂发布了新的文献求助10
6秒前
elsazhou发布了新的文献求助10
7秒前
Vicente完成签到,获得积分10
7秒前
cijing发布了新的文献求助10
7秒前
8秒前
妮妮发布了新的文献求助10
9秒前
drjj发布了新的文献求助10
9秒前
KEyanba完成签到,获得积分0
9秒前
田様应助曲夜白采纳,获得10
9秒前
花花公子完成签到,获得积分10
9秒前
adminlu完成签到 ,获得积分10
9秒前
段甜完成签到 ,获得积分10
10秒前
marco完成签到,获得积分10
10秒前
吴应涛完成签到,获得积分10
10秒前
汉堡包应助小超采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Absent Here 200
Methods of optimization 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4346692
求助须知:如何正确求助?哪些是违规求助? 3853028
关于积分的说明 12026459
捐赠科研通 3494565
什么是DOI,文献DOI怎么找? 1917409
邀请新用户注册赠送积分活动 960363
科研通“疑难数据库(出版商)”最低求助积分说明 860280