计算机科学
水准点(测量)
情绪分析
人工智能
背景(考古学)
特征(语言学)
领域(数学)
机器学习
自然语言处理
语言学
哲学
地理
纯数学
古生物学
生物
数学
大地测量学
作者
Soujanya Poria,Erik Cambria,Devamanyu Hazarika,Navonil Mazumder,Amir Zadeh,Louis‐Philippe Morency
标识
DOI:10.1109/icdm.2017.134
摘要
Multimodal sentiment analysis involves identifying sentiment in videos and is a developing field of research. Unlike current works, which model utterances individually, we propose a recurrent model that is able to capture contextual information among utterances. In this paper, we also introduce attentionbased networks for improving both context learning and dynamic feature fusion. Our model shows 6-8% improvement over the state of the art on a benchmark dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI