解算器
遗传算法
编码(内存)
代表(政治)
方案(数学)
数学优化
趋同(经济学)
计算机科学
算法
比例(比率)
问题解决者
数学
人工智能
物理
政治
量子力学
数学分析
经济
法学
经济增长
政治学
作者
Dragan Matić,Vladimir Filipović,Aleksandar Savić,Zorica Stanimirović
出处
期刊:Kragujevac journal of mathematics
[University Library in Kragujevac]
日期:2011-01-01
卷期号:35 (35): 119-138
被引量:13
摘要
In this paper we present a genetic algorithm (GA) for solving NP-hard Multiple Warehouse Layout Problem (MLWLP). New encoding scheme with appropriate objective functions is implemented. Specific representation and modified genetic operators keep individuals correct and help in restoring good genetic material and avoiding premature convergence in suboptimal solutions. The algorithm is tested on instances generated to simulate real life problems. Experimental results show that the algorithm reaches most of optimal solutions for problems containing up to 40 item types. The algorithm is successfully tested on large scale problem instances that can not be handled by CPLEX solver due to memory limits.
科研通智能强力驱动
Strongly Powered by AbleSci AI