Predicting Microblog Sentiments via Weakly Supervised Multimodal Deep Learning

计算机科学 判别式 人工智能 微博 社会化媒体 卷积神经网络 机器学习 概率逻辑 噪音(视频) 利用 模式 深度学习 可扩展性 情绪分析 光学(聚焦) 模式识别(心理学) 图像(数学) 光学 物理 万维网 数据库 社会学 计算机安全 社会科学
作者
Fuhai Chen,Rongrong Ji,Jinsong Su,Donglin Cao,Yue Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 997-1007 被引量:78
标识
DOI:10.1109/tmm.2017.2757769
摘要

Predicting sentiments of multimodal microblogs composed of text, image, and emoticon have attracted ever-increasing research focus recently. The key challenge lies in the difficulty of collecting a sufficient amount of training labels to train a discriminative model for multimodal prediction. One potential solution is to exploit the labels collected from social media users, which is, however, restricted by the negative effect of label noise. Besides, we have quantitatively found that sentiments in different modalities may be independent, which disables the usage of previous multimodal sentiment analysis schemes in our problem. In this paper, we introduce a weakly supervised multimodal deep learning (WS-MDL) scheme toward robust and scalable sentiment prediction. WS-MDL learns convolutional neural networks iteratively and selectively from “weak” emoticon labels, which are cheaply available and noise containing. In particular, to filter out the label noise and to capture the modality dependency, a probabilistic graphical model is introduced to simultaneously learn discriminative multimodal descriptors and infer the confidence of label noise. Extensive evaluations are conducted in a million-scale, real-world microblog sentiment dataset crawled from Sina Weibo. We have validated the merits of the proposed scheme by quantitatively showing its superior performance over several state-of-the-art and alternative approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
茹茹发布了新的文献求助10
1秒前
1秒前
1秒前
小黄完成签到 ,获得积分10
1秒前
科研通AI5应助摸鱼真君采纳,获得10
1秒前
bk201发布了新的文献求助10
4秒前
宋呵呵发布了新的文献求助10
5秒前
bk201完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
ss13l完成签到,获得积分10
16秒前
ori发布了新的文献求助10
16秒前
17秒前
18秒前
wenyh完成签到 ,获得积分10
19秒前
qqqq发布了新的文献求助10
19秒前
qqqq发布了新的文献求助10
19秒前
qqqq发布了新的文献求助10
19秒前
qqqq发布了新的文献求助10
19秒前
qqqq发布了新的文献求助10
19秒前
qqqq发布了新的文献求助10
19秒前
医帆风顺完成签到,获得积分10
19秒前
NatureLee完成签到 ,获得积分10
22秒前
邢慧兰完成签到,获得积分10
27秒前
可爱的函函应助Piang采纳,获得10
27秒前
美满的书南完成签到,获得积分10
28秒前
31秒前
逍遥猪皮完成签到,获得积分10
31秒前
31秒前
今后应助koala采纳,获得10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831597
求助须知:如何正确求助?哪些是违规求助? 3373747
关于积分的说明 10481372
捐赠科研通 3093719
什么是DOI,文献DOI怎么找? 1702969
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771319