光电阴极
光电流
材料科学
分解水
能量转换效率
量子效率
可逆氢电极
光电子学
光强度
带隙
吸收(声学)
电极
分析化学(期刊)
电化学
光学
电子
光催化
工作电极
物理
催化作用
复合材料
化学
物理化学
量子力学
生物化学
色谱法
作者
Wenzhe Niu,Thomas Moehl,Wei Cui,René Wick‐Joliat,Liping Zhu,S. David Tilley
标识
DOI:10.1002/aenm.201702323
摘要
Abstract Cu 2 O is one of the most promising light absorbing materials for solar energy conversion. Previous studies with Cu 2 O for water splitting usually deliver high photocurrent or high photovoltage, but not both. Here, a Cu 2 O/Ga 2 O 3 /TiO 2 /RuO x photocathode that benefits from a high quality thermally oxidized Cu 2 O layer and good band alignment of the Ga 2 O 3 buffer layer is reported, yielding a photocurrent of 6 mA cm −2 at 0 V versus reversible hydrogen electrode (RHE), an onset potential of 0.9 V versus RHE, and 3.5 mA cm −2 at 0.5 V versus RHE. The quantum efficiency spectrum (incident photon to current efficiency, IPCE) reveals a dramatically improved green/red response and a decreased blue response compared with electrodeposited Cu 2 O films. Light intensity dependence and photocurrent transient studies enable the identification of the limitations in the performance. Due to the complementary IPCE curves of thermally oxidized and electrodeposited Cu 2 O photocathodes, a dual photocathode is fabricated to maximize the absorption over the entire range of above band gap radiation. Photocurrents of 7 mA cm −2 at 0 V versus RHE are obtained in the dual photocathodes, with an onset potential of 0.9 V versus RHE and a thermodynamically based energy conversion efficiency of 1.9%.
科研通智能强力驱动
Strongly Powered by AbleSci AI