G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway

磷酸戊糖途径 基因敲除 神经保护 缺血 体内 药理学 再灌注损伤 葡萄糖-6-磷酸脱氢酶 脑缺血 化学 细胞凋亡 生物 医学 生物化学 脱氢酶 内科学 糖酵解 生物技术
作者
Lijuan Cao,Dingmei Zhang,Jieyu Chen,Yuanyuan Qin,Rui Sheng,Xing Feng,Zhong Chen,Yu‐Qiang Ding,Mei Li,Zheng‐Hong Qin
出处
期刊:Free Radical Biology and Medicine [Elsevier BV]
卷期号:112: 433-444 被引量:49
标识
DOI:10.1016/j.freeradbiomed.2017.08.011
摘要

TIGAR-regulated pentose phosphate pathway (PPP) plays a critical role in the neuronal survival during cerebral ischemia/reperfusion. Glucose-6-phosphate dehydrogenase (G6PD) is a rate-limiting enzyme in PPP and thus, we hypothesized that it plays an essential role in anti-oxidative defense through producing NADPH. The present study investigated the regulation and the role of G6PD in ischemia/reperfusion-induced neuronal injury with in vivo and in vitro models of ischemic stroke. The results showed that the levels of G6PD mRNA and protein were increased after ischemia/reperfusion. In vivo, lentivirus-mediated G6PD overexpression in mice markedly reduced neuronal damage after ischemia/reperfusion insult, while lentivirus-mediated G6PD knockdown exacerbated it. In vitro, overexpression of G6PD in cultured primary neurons decreased neuronal injury under oxygen and glucose deprivation/reoxygenation (OGD/R) condition, whereas knockdown of G6PD aggravated it. Overexpression of G6PD increased levels of NADPH and reduced form of glutathione (rGSH), and ameliorated ROS-induced macromolecular damage. On the contrary, knockdown of G6PD executed the opposite effects in mice and in primary neurons. Supplementation of exogenous NADPH alleviated the detrimental effects of G6PD knockdown, whereas further enhanced the beneficial effects of G6PD overexpression in ischemic injury. Therefore, our results suggest that G6PD protects ischemic brain injury through increasing PPP. Thus G6PD may be considered as potential therapeutic target for treatment of ischemic brain injury.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈陈发布了新的文献求助20
刚刚
李锐完成签到 ,获得积分10
1秒前
核动力路灯完成签到,获得积分10
1秒前
852应助冷傲的迎荷采纳,获得30
1秒前
昏睡的代桃完成签到,获得积分10
1秒前
srfann发布了新的文献求助10
1秒前
3秒前
4秒前
呵呵呵呵发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
无心的访梦完成签到,获得积分10
6秒前
羊蛋儿发布了新的文献求助10
6秒前
7秒前
7秒前
上好佳完成签到,获得积分10
7秒前
一路向南完成签到 ,获得积分10
7秒前
ggg发布了新的文献求助10
8秒前
名字是乱码完成签到,获得积分20
9秒前
10秒前
shanshan发布了新的文献求助10
10秒前
10秒前
12秒前
maizai发布了新的文献求助10
13秒前
14秒前
ggg完成签到,获得积分10
15秒前
儒雅的冷松完成签到,获得积分10
15秒前
15秒前
16秒前
Jasper应助千幻采纳,获得10
16秒前
南孚电蛤蟆完成签到,获得积分10
16秒前
16秒前
16秒前
学科研的小林完成签到,获得积分10
17秒前
18秒前
尽低眉发布了新的文献求助30
18秒前
英俊的铭应助任博文采纳,获得10
19秒前
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110