Direct Dry Synthesis of LiNi0.8Co0.2O2 Thin Film for Lithium Ion Battery Cathodes

锂(药物) 电解质 材料科学 锂钴氧化物 溶解 阴极 氧化物 电池(电) 插层(化学) 无机化学 化学工程 氧化钴 过渡金属 锂离子电池 化学 电极 冶金 催化作用 物理化学 物理 工程类 功率(物理) 量子力学 医学 生物化学 内分泌学
作者
Yang Wang,Radenka Marić
出处
期刊:Meeting abstracts 卷期号:MA2015-02 (1): 16-16
标识
DOI:10.1149/ma2015-02/1/16
摘要

In recent years, a number of cathode materials have been investigated for lithium ion battery applications. Transition metal oxides like LiCoO 2 [1-2], LiNiO 2 [3-4] and LiMn 2 O 4 [5-6] have attracted much attention from researchers due to their stability and capacity to intercalate Li. LiCoO 2 is commonly employed in commercial batteries as an intercalation compound because of its easiness in synthesis, high theoretical specific capacity and good reversibility. However, high toxicity and high cost are associated with the use of Co. Lithium nickel oxide and lithium manganese oxide are two feasible replacement materials for lithium cobalt oxide, but they come with challenges and limitations as well. LiMn 2 O 4 reacts with the electrolyte when the temperature exceeds 55 °C, leading to dissolution of manganese and the loss of capacity [7]. In the case of LiNiO 2 cathodes, its capacity is irreversibly lost when nickel oxide transforms from the hexagonal to the cubic phase during the lithium deintercalation process [8]. This phase transformation can be prevented by partially replacing nickel with cobalt, thus LiNi x Co 1− x O 2 (0 < x < 1) could enhance the stability while adding the benefits of higher reversibility and lower cost [9-10]. It is also found from literature that when x is approximately 0.2, this material demonstrates better cycling properties than other materials mentioned above [11-13]. While solid state reactions and sol-gel methods have been widely used to synthesize LiNi 0.8 Co 0.2 O 2 powders, there are many problems associated with these processes, such as structural inhomogeneity, multiple time consuming steps, irregular morphology and poor control of the particle size [14-16]. Reactive spray deposition technology (RSDT), a one-step flame based deposition method, offers a convenient solution to electrode fabrication by direct deposition of LiNi 0.8 Co 0.2 O 2 nanoparticles. Films can be grown directly on the current collector. RSDT has the capability to tailor the electrochemical properties of synthesized cathode materials by manipulating the several key processing conditions. The size, morphology, and composition of particles can be controlled by changing the reactant concentration in the solvent, the heat enthalpy of solvent, the flow rate of precursor solution, and the flow rate of oxidant gases. Precursor solution for flame combustion is prepared by dissolving acetylacetonates of lithium, cobalt and nickel into organic solvents like methanol. X-ray diffraction (XRD), transmission electron microscopy (TEM) and inductively coupled plasma (ICP) are used to characterize the chemical composition, crystal structure, and structural morphology of the synthesized LiNi 0.8 Co 0.2 O 2 nanoparticles. Electrochemical properties of as-deposited LiNi 0.8 Co 0.2 O 2 thin film are evaluated with typical 2032 coin half-cell using lithium foil as the counter electrode. As the particle size of cathode material is in the nanometer range, the diffusion length of lithium ions is small, which enables a fast charge and discharge rate. The large surface area of the nanoparticles can also reduce the resistance of charge transfer. References: Z. S. Peng, C. R. Wan, and C. Y. Jiang, J. Power Sources, 72.2 (1998): 215-220. Yun Ou, et al., J. Phys. Chem. Solids, 74.2 (2013): 322-327. Myoung Youp Song, and Ryong Lee, J. Power Sources, 111.1 (2002): 97-103. Myoung Youp Song, Hun Uk Kim, and Hye Ryoung Park, Ceram. Int., 40.3 (2014): 4219–4224. Guanhua Jina, et al., Electrochimica Acta, 150.20 (2014): 1–7. Xian-Ming Liu, et al., J. Power Sources, 195.13 (2010): 4290–4296. A. B. Yuan, L. Tian, W. M. Xu and Y. Q. Wang, J. Power Sources, 195 (2010): 5032. P. Kalyani, and N. Kalaiselvi, Sci. Technol. Adv. Mater., 6 (2005): 689–703. C. Delmas, et al., Electrochimica Acta, 45 (1999): 243-253. Padikkasu Periasamy, et al., J. Power Sources, 132.1 (2004): 213-218. J. Cho, Chem. Mater., 12 (2000): 3089. W. Lu, et al., J. Appl. Electrochem, 30 (2000): 1119. Z. Yang, B. Wang, W. Yang, and X. Wei, Electrochim Acta, 52 (2007): 8069. A. Ueda, and T. Ohzuku, J. Electrochem. Soc., 141 (1994): 8. T. Tsumura, A. Shimizu, and M. Inagaki, J. Mater. Chem., 3 (1993): 1995. C.C. Chang, J.Y. Kim, and P.N. Kumta, J. Power Sources, 89 (2000): 56.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leon完成签到 ,获得积分10
刚刚
刚刚
米丫丫米发布了新的文献求助10
1秒前
科目三应助manyi1972采纳,获得10
1秒前
wintew发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
无花果应助WAM采纳,获得10
5秒前
6秒前
czd发布了新的文献求助30
7秒前
7秒前
筱璞羲发布了新的文献求助10
8秒前
吃瓜群众发布了新的文献求助10
8秒前
8秒前
9秒前
lllfff发布了新的文献求助10
9秒前
hoshi完成签到,获得积分20
9秒前
好好完成签到,获得积分10
9秒前
9秒前
102755完成签到,获得积分10
10秒前
10秒前
耍酷寒烟发布了新的文献求助10
10秒前
10秒前
呆小婷儿完成签到,获得积分10
11秒前
11秒前
英姑应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
12秒前
小白应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
wtian1221应助科研通管家采纳,获得10
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
核桃发布了新的文献求助10
12秒前
12秒前
老福贵儿应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632254
求助须知:如何正确求助?哪些是违规求助? 4726532
关于积分的说明 14981567
捐赠科研通 4790212
什么是DOI,文献DOI怎么找? 2558228
邀请新用户注册赠送积分活动 1518633
关于科研通互助平台的介绍 1479071