Machine Learning in Medicine

医学物理学 医学教育 医学 重症监护医学
作者
Rahul C. Deo
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:132 (20): 1920-1930 被引量:2686
标识
DOI:10.1161/circulationaha.115.001593
摘要

Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
管紫南发布了新的社区帖子
刚刚
梦影发布了新的文献求助10
刚刚
刚刚
金色稻谷完成签到 ,获得积分10
刚刚
大大彬发布了新的文献求助30
1秒前
njau2005完成签到,获得积分10
1秒前
圈哥完成签到,获得积分10
1秒前
科研通AI5应助22222采纳,获得10
1秒前
冰魂应助显隐采纳,获得10
2秒前
2秒前
跳跃的老三完成签到,获得积分10
2秒前
Mae完成签到 ,获得积分10
2秒前
2秒前
风轻完成签到,获得积分10
3秒前
SYY发布了新的文献求助10
3秒前
3秒前
李健应助俏皮的惜灵采纳,获得20
3秒前
4秒前
YY发布了新的文献求助30
4秒前
4秒前
Vera完成签到,获得积分10
4秒前
yanhuazi完成签到,获得积分10
4秒前
靖123456发布了新的文献求助10
4秒前
5秒前
5秒前
英姑应助YGYANG采纳,获得10
5秒前
camaelxin发布了新的文献求助10
6秒前
xinyu发布了新的文献求助10
6秒前
可爱的彩虹应助Stageruner采纳,获得30
7秒前
hahaha应助风趣的小鸽子采纳,获得10
7秒前
cdercder应助凶狠的鸣凤采纳,获得10
7秒前
7秒前
鲜艳的从波完成签到,获得积分10
7秒前
swy发布了新的文献求助10
8秒前
筋筋子发布了新的文献求助10
8秒前
超越好帅发布了新的文献求助10
8秒前
路绪震关注了科研通微信公众号
8秒前
9秒前
Y_Jfeng完成签到,获得积分10
9秒前
9秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804665
求助须知:如何正确求助?哪些是违规求助? 3349505
关于积分的说明 10344809
捐赠科研通 3065569
什么是DOI,文献DOI怎么找? 1683126
邀请新用户注册赠送积分活动 808727
科研通“疑难数据库(出版商)”最低求助积分说明 764723