A machine learning‐based, decision support, mobile phone application for diagnosis of common dermatological diseases

医学 健康 临床决策支持系统 移动电话 医学诊断 机器学习 人工智能 工作流程 卷积神经网络 远程医疗 注意事项 人气 目的皮肤病学 医疗保健 决策支持系统 计算机科学 病理 心理干预 护理部 心理学 电信 社会心理学 数据库 经济 经济增长
作者
Rashi Pangti,Jyoti Mathur,Vikas Chouhan,S. Mohan Kumar,Lavina Rajput,Sandesh Shah,A. K. Gupta,Aparna Banerjee Dixit,Dhwani Dholakia,Sanjeev Gupta,Somesh Gupta,M. Patricia George,Vinod Sharma,Somesh Gupta
出处
期刊:Journal of The European Academy of Dermatology and Venereology [Wiley]
卷期号:35 (2): 536-545 被引量:56
标识
DOI:10.1111/jdv.16967
摘要

Abstract Background The integration of machine learning algorithms in decision support tools for physicians is gaining popularity. These tools can tackle the disparities in healthcare access as the technology can be implemented on smartphones. We present the first, large‐scale study on patients with skin of colour, in which the feasibility of a novel mobile health application (mHealth app) was investigated in actual clinical workflows. Objective To develop a mHealth app to diagnose 40 common skin diseases and test it in clinical settings. Methods A convolutional neural network‐based algorithm was trained with clinical images of 40 skin diseases. A smartphone app was generated and validated on 5014 patients, attending rural and urban outpatient dermatology departments in India. The results of this mHealth app were compared against the dermatologists’ diagnoses. Results The machine–learning model, in an in silico validation study, demonstrated an overall top‐1 accuracy of 76.93 ± 0.88% and mean area‐under‐curve of 0.95 ± 0.02 on a set of clinical images. In the clinical study, on patients with skin of colour, the app achieved an overall top‐1 accuracy of 75.07% (95% CI = 73.75–76.36), top‐3 accuracy of 89.62% (95% CI = 88.67–90.52) and mean area‐under‐curve of 0.90 ± 0.07. Conclusion This study underscores the utility of artificial intelligence‐driven smartphone applications as a point‐of‐care, clinical decision support tool for dermatological diagnosis for a wide spectrum of skin diseases in patients of the skin of colour.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI2S应助TT采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得20
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
自由老头应助科研通管家采纳,获得20
刚刚
Hello应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
1秒前
千跃应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
1秒前
酷炫翠桃应助科研通管家采纳,获得20
1秒前
dudu发布了新的文献求助10
1秒前
小蘑菇应助chris chen采纳,获得10
1秒前
1秒前
hildelau完成签到,获得积分10
2秒前
孤独聪健完成签到,获得积分10
2秒前
科研通AI2S应助mdmdd采纳,获得10
3秒前
3秒前
Shaw发布了新的文献求助10
4秒前
深情安青应助花样年华采纳,获得10
4秒前
4秒前
开心的萝莉完成签到,获得积分10
5秒前
5秒前
许鸽完成签到,获得积分10
6秒前
7秒前
顾矜应助子车谷波采纳,获得10
7秒前
7秒前
清脆又蓝发布了新的文献求助10
7秒前
畅快朝雪完成签到 ,获得积分20
8秒前
Jeson完成签到,获得积分10
8秒前
angew2000完成签到,获得积分10
8秒前
隐形的傲易完成签到 ,获得积分10
9秒前
日进一data完成签到,获得积分10
9秒前
英俊的铭应助合适怜南采纳,获得10
9秒前
晓E完成签到,获得积分10
10秒前
罗moumou发布了新的文献求助10
10秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4049160
求助须知:如何正确求助?哪些是违规求助? 3587106
关于积分的说明 11398496
捐赠科研通 3313646
什么是DOI,文献DOI怎么找? 1822928
邀请新用户注册赠送积分活动 894874
科研通“疑难数据库(出版商)”最低求助积分说明 816557