An ensemble deep learning approach for driver lane change intention inference

计算机科学 推论 控制(管理) 高级驾驶员辅助系统 人工智能 情态动词 智能交通系统 人工神经网络 机器学习 工程类 运输工程 化学 高分子化学
作者
Yang Xing,Chen Lv,Huaji Wang,Dongpu Cao,Efstathios Velenis
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:115: 102615-102615 被引量:151
标识
DOI:10.1016/j.trc.2020.102615
摘要

With the rapid development of intelligent vehicles, drivers are increasingly likely to share their control authorities with the intelligent control unit. For building an efficient Advanced Driver Assistance Systems (ADAS) and shared-control systems, the vehicle needs to understand the drivers’ intent and their activities to generate assistant and collaborative control strategies. In this study, a driver intention inference system that focuses on the highway lane change maneuvers is proposed. First, a high-level driver intention mechanism and framework are introduced. Then, a vision-based intention inference system is proposed, which captures the multi-modal signals based on multiple low-cost cameras and the VBOX vehicle data acquisition system. A novel ensemble bi-directional recurrent neural network (RNN) model with Long Short-Term Memory (LSTM) units is proposed to deal with the time-series driving sequence and the temporal behavioral patterns. Naturalistic highway driving data that consists of lane-keeping, left and right lane change maneuvers are collected and used for model construction and evaluation. Furthermore, the driver's pre-maneuver activities are statistically analyzed. It is found that for situation-aware, drivers usually check the mirrors for more than six seconds before they initiate the lane change maneuver, and the time interval between steering the handwheel and crossing the lane is about 2 s on average. Finally, hypothesis testing is conducted to show the significant improvement of the proposed algorithm over existing ones. With five-fold cross-validation, the EBiLSTM model achieves an average accuracy of 96.1% for the intention that is inferred 0.5 s before the maneuver starts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我爱科研完成签到 ,获得积分10
1秒前
西瓜完成签到,获得积分10
1秒前
2秒前
随遇而安应助车载儿童采纳,获得10
3秒前
巫马白桃完成签到,获得积分20
3秒前
Esfec发布了新的文献求助10
3秒前
Ship发布了新的文献求助10
4秒前
赤墨完成签到,获得积分10
4秒前
plh发布了新的文献求助20
4秒前
科研通AI5应助yangmiemie采纳,获得10
4秒前
夜无疆完成签到,获得积分10
6秒前
Yiling完成签到,获得积分10
6秒前
科研通AI5应助gemini0615采纳,获得30
6秒前
包容的海豚完成签到 ,获得积分10
7秒前
zhangzhang完成签到,获得积分10
7秒前
余味应助rrrrrrry采纳,获得10
8秒前
科研通AI2S应助rrrrrrry采纳,获得10
8秒前
充电宝应助rrrrrrry采纳,获得150
8秒前
善学以致用应助rrrrrrry采纳,获得10
8秒前
华仔应助rrrrrrry采纳,获得10
8秒前
852应助rrrrrrry采纳,获得10
8秒前
10秒前
10秒前
Esfec完成签到,获得积分10
11秒前
11秒前
11秒前
天天快乐应助向向向采纳,获得10
12秒前
LM发布了新的文献求助10
13秒前
SYLH应助抹茶肥肠采纳,获得10
13秒前
13秒前
14秒前
若雨凌风发布了新的文献求助10
17秒前
111发布了新的文献求助10
17秒前
潇潇声韵发布了新的文献求助30
18秒前
19秒前
yangmiemie发布了新的文献求助10
20秒前
20秒前
21秒前
诗筠完成签到 ,获得积分0
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784091
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240855
捐赠科研通 3044714
什么是DOI,文献DOI怎么找? 1671236
邀请新用户注册赠送积分活动 800193
科研通“疑难数据库(出版商)”最低求助积分说明 759241