已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Meta-Transfer Learning Through Hard Tasks

计算机科学 人工智能 学习迁移 机器学习
作者
Qianru Sun,Yaoyao Liu,Zhaozheng Chen,Tat‐Seng Chua,Bernt Schiele
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:44 (3): 1443-1456 被引量:70
标识
DOI:10.1109/tpami.2020.3018506
摘要

Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, typical meta-learning models use shallow neural networks, thus limiting its effectiveness. In order to achieve top performance, some recent works tried to use the DNNs pre-trained on large-scale datasets but mostly in straight-forward manners, e.g., (1) taking their weights as a warm start of meta-training, and (2) freezing their convolutional layers as the feature extractor of base-learners. In this paper, we propose a novel approach called meta-transfer learning (MTL) , which learns to transfer the weights of a deep NN for few-shot learning tasks. Specifically, meta refers to training multiple tasks, and transfer is achieved by learning scaling and shifting functions of DNN weights (and biases) for each task. To further boost the learning efficiency of MTL, we introduce the hard task (HT) meta-batch scheme as an effective learning curriculum of few-shot classification tasks. We conduct experiments for five-class few-shot classification tasks on three challenging benchmarks, mini ImageNet, tiered ImageNet, and Fewshot-CIFAR100 (FC100), in both supervised and semi-supervised settings. Extensive comparisons to related works validate that our MTL approach trained with the proposed HT meta-batch scheme achieves top performance. An ablation study also shows that both components contribute to fast convergence and high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枕梦发布了新的文献求助10
1秒前
善良的孤云完成签到,获得积分10
2秒前
dgsxl发布了新的文献求助10
4秒前
852应助个性的夜白采纳,获得10
5秒前
Jayya完成签到,获得积分10
6秒前
可以听见吗完成签到 ,获得积分10
9秒前
rmbsLHC发布了新的文献求助10
9秒前
Joanne完成签到 ,获得积分10
10秒前
英姑应助枕梦采纳,获得10
10秒前
13秒前
14秒前
dgsxl完成签到,获得积分10
15秒前
16秒前
qq发布了新的文献求助10
16秒前
18秒前
6665发布了新的文献求助10
19秒前
liuhang发布了新的文献求助10
21秒前
学术垃圾1984完成签到,获得积分10
22秒前
22秒前
高高的巨人完成签到 ,获得积分10
22秒前
23秒前
蓝天完成签到,获得积分10
23秒前
wcc发布了新的文献求助10
26秒前
6665完成签到,获得积分10
27秒前
眯眯眼的宛白完成签到,获得积分10
31秒前
32秒前
Akim应助活泼的机器猫采纳,获得10
35秒前
37秒前
彭于晏应助67采纳,获得10
37秒前
高高的笑柳完成签到 ,获得积分10
37秒前
bc应助褚白竹采纳,获得30
42秒前
逍遥解牛发布了新的文献求助10
43秒前
FashionBoy应助zyl采纳,获得30
43秒前
44秒前
Nola完成签到 ,获得积分10
44秒前
酷波er应助qq采纳,获得10
44秒前
善学以致用应助kong采纳,获得10
45秒前
ewyzero举报大写的笨求助涉嫌违规
46秒前
Jasper应助Tana采纳,获得10
50秒前
桃桃子发布了新的文献求助10
51秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819631
求助须知:如何正确求助?哪些是违规求助? 3362627
关于积分的说明 10417782
捐赠科研通 3080775
什么是DOI,文献DOI怎么找? 1694763
邀请新用户注册赠送积分活动 814781
科研通“疑难数据库(出版商)”最低求助积分说明 768462