已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems

计算机科学 工作流程 云计算 光学(聚焦) 杂交基因组组装 并行计算 序列(生物学) DNA测序 多核处理器 参考基因组 实时计算 操作系统 数据库 DNA 物理 生物 光学 遗传学
作者
Md. Vasimuddin,Sanchit Misra,Heng Li,Srinivas Aluru
标识
DOI:10.1109/ipdps.2019.00041
摘要

Innovations in Next-Generation Sequencing are enabling generation of DNA sequence data at ever faster rates and at very low cost. For example, the Illumina NovaSeq 6000 sequencer can generate 6 Terabases of data in less than two days, sequencing nearly 20 Billion short DNA fragments called reads at the low cost of $1000 per human genome. Large sequencing centers typically employ hundreds of such systems. Such highthroughput and low-cost generation of data underscores the need for commensurate acceleration in downstream computational analysis of the sequencing data. A fundamental step in downstream analysis is mapping of the reads to a long reference DNA sequence, such as a reference human genome. Sequence mapping is a compute-intensive step that accounts for more than 30% of the overall time of the GATK (Genome Analysis ToolKit) best practices workflow. BWA-MEM is one of the most widely used tools for sequence mapping and has tens of thousands of users. In this work, we focus on accelerating BWA-MEM through an efficient architecture aware implementation, while maintaining identical output. The volume of data requires distributed computing and is usually processed on clusters or cloud deployments with multicore processors usually being the platform of choice. Since the application can be easily parallelized across multiple sockets (even across distributed memory systems) by simply distributing the reads equally, we focus on performance improvements on a single socket multicore processor. BWA-MEM run time is dominated by three kernels, collectively responsible for more than 85% of the overall compute time. We improved the performance of the three kernels by 1) using techniques to improve cache reuse, 2) simplifying the algorithms, 3) replacing many small memory allocations with a few large contiguous ones to improve hardware prefetching of data, 4) software prefetching of data, and 5) utilization of SIMD wherever applicable and massive reorganization of the source code to enable these improvements. As a result, we achieved nearly 2x, 183x, and 8x speedups on the three kernels, respectively, resulting in up to 3.5x and 2.4x speedups on end-to-end compute time over the original BWA-MEM on single thread and single socket of Intel Xeon Skylake processor. To the best of our knowledge, this is the highest reported speedup over BWA-MEM (running on a single CPU) while using a single CPU or a single CPU-single GPGPU/FPGA combination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汪旺完成签到 ,获得积分10
刚刚
ELMO发布了新的文献求助10
刚刚
1秒前
可爱的函函应助cg采纳,获得10
1秒前
2秒前
2秒前
4秒前
5秒前
酷波er应助Kang采纳,获得10
6秒前
脑洞疼应助殷勤的之双采纳,获得10
6秒前
bkagyin应助ccc123采纳,获得10
6秒前
6秒前
Cherry完成签到 ,获得积分10
7秒前
8秒前
ioioio发布了新的文献求助30
8秒前
糊涂的白梦完成签到,获得积分10
8秒前
Mic应助桥鲤梧桐采纳,获得30
8秒前
春游小熊完成签到,获得积分10
9秒前
缓慢幻天完成签到,获得积分10
9秒前
10秒前
高兴吐司完成签到,获得积分10
11秒前
华仔应助tony采纳,获得10
12秒前
小呆瓜与鱼完成签到,获得积分10
12秒前
苗苗043完成签到,获得积分10
12秒前
风过大泽发布了新的文献求助10
13秒前
理想三寻发布了新的文献求助10
14秒前
聪明勇敢幸运虾完成签到,获得积分10
14秒前
迷路的慕灵完成签到,获得积分10
16秒前
邬美杰发布了新的文献求助10
17秒前
好眠哈密瓜完成签到 ,获得积分10
19秒前
大模型应助风过大泽采纳,获得10
20秒前
21秒前
21秒前
21秒前
dsk发布了新的文献求助10
22秒前
22秒前
深情安青应助刘雅杰采纳,获得10
23秒前
23秒前
ioioio完成签到,获得积分10
24秒前
贪玩的月饼完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475942
求助须知:如何正确求助?哪些是违规求助? 4577610
关于积分的说明 14362245
捐赠科研通 4505491
什么是DOI,文献DOI怎么找? 2468706
邀请新用户注册赠送积分活动 1456339
关于科研通互助平台的介绍 1429950