Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning

医学 血管内治疗 冲程(发动机) 急性中风 缺血性中风 内科学 心脏病学 外科 缺血 动脉瘤 机械工程 工程类 组织纤溶酶原激活剂
作者
Gianluca Brugnara,Ulf Neuberger,Mustafa Ahmed Mahmutoglu,Martha Foltyn,Christian Herweh,Simon Nagel,Silvia Schönenberger,Sabine Heiland,Christian Ulfert,Peter A. Ringleb,Martin Bendszus,Markus Möhlenbruch,Johannes Pfaff,Philipp Kickingereder
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:51 (12): 3541-3551 被引量:140
标识
DOI:10.1161/strokeaha.120.030287
摘要

Background and Purpose: This study assessed the predictive performance and relative importance of clinical, multimodal imaging, and angiographic characteristics for predicting the clinical outcome of endovascular treatment for acute ischemic stroke. Methods: A consecutive series of 246 patients with acute ischemic stroke and large vessel occlusion in the anterior circulation who underwent endovascular treatment between April 2014 and January 2018 was analyzed. Clinical, conventional imaging (electronic Alberta Stroke Program Early CT Score, acute ischemic volume, site of vessel occlusion, and collateral score), and advanced imaging characteristics (CT-perfusion with quantification of ischemic penumbra and infarct core volumes) before treatment as well as angiographic (interval groin puncture-recanalization, modified Thrombolysis in Cerebral Infarction score) and postinterventional clinical (National Institutes of Health Stroke Scale score after 24 hours) and imaging characteristics (electronic Alberta Stroke Program Early CT Score, final infarction volume after 18–36 hours) were assessed. The modified Rankin Scale (mRS) score at 90 days (mRS-90) was used to measure patient outcome (favorable outcome: mRS-90 ≤2 versus unfavorable outcome: mRS-90 >2). Machine-learning with gradient boosting classifiers was used to assess the performance and relative importance of the extracted characteristics for predicting mRS-90. Results: Baseline clinical and conventional imaging characteristics predicted mRS-90 with an area under the receiver operating characteristics curve of 0.740 (95% CI, 0.733–0.747) and an accuracy of 0.711 (95% CI, 0.705–0.717). Advanced imaging with CT-perfusion did not improved the predictive performance (area under the receiver operating characteristics curve, 0.747 [95% CI, 0.740–0.755]; accuracy, 0.720 [95% CI, 0.714–0.727]; P =0.150). Further inclusion of angiographic and postinterventional characteristics significantly improved the predictive performance (area under the receiver operating characteristics curve, 0.856 [95% CI, 0.850–0.861]; accuracy, 0.804 [95% CI, 0.799–0.810]; P <0.001). The most important parameters for predicting mRS 90 were National Institutes of Health Stroke Scale score after 24 hours (importance =100%), premorbid mRS score (importance =44%) and final infarction volume on postinterventional CT after 18 to 36 hours (importance =32%). Conclusions: Integrative assessment of clinical, multimodal imaging, and angiographic characteristics with machine-learning allowed to accurately predict the clinical outcome following endovascular treatment for acute ischemic stroke. Thereby, premorbid mRS was the most important clinical predictor for mRS-90, and the final infarction volume was the most important imaging predictor, while the extent of hemodynamic impairment on CT-perfusion before treatment had limited importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenhuan发布了新的文献求助10
刚刚
沙猛发布了新的文献求助10
刚刚
微兔小妹完成签到 ,获得积分10
1秒前
1秒前
幸福广山完成签到,获得积分10
1秒前
懒洋洋发布了新的文献求助10
1秒前
善学以致用应助qiu采纳,获得10
1秒前
丘比特应助Zzskrrrr采纳,获得10
1秒前
meng发布了新的文献求助10
1秒前
丁小丁发布了新的文献求助30
2秒前
2秒前
小蘑菇应助444采纳,获得10
2秒前
噔噔噔噔发布了新的文献求助10
2秒前
蒲公英完成签到 ,获得积分10
3秒前
良辰应助辞忧采纳,获得10
3秒前
3秒前
Marayoung发布了新的文献求助10
4秒前
4秒前
什米完成签到,获得积分10
4秒前
可她不是绘梨衣完成签到,获得积分10
4秒前
瑶啊瑶完成签到,获得积分10
4秒前
chenhuan完成签到,获得积分10
4秒前
5秒前
Stokis发布了新的文献求助10
5秒前
zjx5591发布了新的文献求助10
6秒前
大模型应助鲜艳的初夏采纳,获得30
6秒前
善学以致用应助wx采纳,获得10
6秒前
6秒前
happyAlice完成签到,获得积分10
7秒前
刘仁轨完成签到,获得积分10
7秒前
7秒前
Daniel完成签到,获得积分10
8秒前
下不上文献的大越完成签到,获得积分10
9秒前
无情谷兰发布了新的文献求助10
9秒前
赵子发布了新的文献求助10
10秒前
炙热的晓曼完成签到 ,获得积分10
10秒前
愉快幻悲发布了新的文献求助10
10秒前
dd大大发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
Sexual Health of Young Adults Living with Perinatally Acquired HIV in Paris, France: A Qualitative Study 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832007
求助须知:如何正确求助?哪些是违规求助? 3374388
关于积分的说明 10484690
捐赠科研通 3094239
什么是DOI,文献DOI怎么找? 1703397
邀请新用户注册赠送积分活动 819420
科研通“疑难数据库(出版商)”最低求助积分说明 771497