Mask-guided generative adversarial network for MRI-based CT synthesis

对抗制 生成对抗网络 生成语法 计算机科学 人工智能 放射科 医学 深度学习
作者
Yu Luo,Shaowei Zhang,Jie Ling,Zhiyi Lin,Zongming Wang,Shun Yao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:295: 111799-111799 被引量:3
标识
DOI:10.1016/j.knosys.2024.111799
摘要

Synthetic computed tomography (sCT) images from magnetic resonance imaging (MRI) data have broad applications in clinical medicine, including radiation oncology and surgical planning. With the development of deep learning technology in medical image analysis, convolution-based generative adversarial networks (GANs) have demonstrated their promising performance in synthesizing CT from MRI. However, many GAN variants tend to generate sCT images from MRI scans in an end-to-end manner, ignoring the distribution differences between different tissues and potentially leading to poor and unrealistic synthetic results. To solve this problem, we propose the MGDGAN, a mask-guided dual network based on GAN architecture for CT synthesis from MRI. Specifically, a mask that delineates the bone part (sBone) is first learned to guide the following synthesis, then the sBone and the soft-tissue part (sSoft-tissue) are synthesized through two parallel branches. Finally, the sCT image is obtained by the fusion of sBone and sSoft-tissue. Experimental results indicate that MGDGAN could generate sCT images with high accuracy in fine bone structure, brain tissue, and cerebral lesions, which are visually closer to the real CT (rCT) images. In quantitative evaluation, MGDGAN outperforms other state-of-the-art methods on multiple datasets, including CycleGAN, Pix2Pix, ECNN, cGAN9, APS and ResViT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助眉间一把刀采纳,获得10
1秒前
gogo完成签到,获得积分10
1秒前
xx发布了新的文献求助10
4秒前
4秒前
元谷雪发布了新的文献求助10
4秒前
lf-leo发布了新的文献求助10
5秒前
小二郎应助livinglast采纳,获得10
6秒前
xx发布了新的文献求助10
6秒前
6秒前
一帆风顺发布了新的文献求助80
7秒前
Akim应助沉默寄凡采纳,获得10
8秒前
10秒前
11秒前
11秒前
12秒前
12秒前
lehha完成签到,获得积分10
14秒前
黄小花发布了新的文献求助10
17秒前
一帆风顺发布了新的文献求助10
17秒前
17秒前
18秒前
xiangkun完成签到,获得积分20
18秒前
19秒前
彭于晏应助12采纳,获得10
20秒前
白白关注了科研通微信公众号
22秒前
快乐小子发布了新的文献求助30
23秒前
科研民工李完成签到,获得积分10
23秒前
沉静丹寒完成签到,获得积分10
23秒前
荼蘼如雪发布了新的文献求助10
23秒前
23秒前
夏天发布了新的文献求助10
24秒前
24秒前
科研通AI2S应助断棍豪斯采纳,获得20
25秒前
25秒前
石贵远完成签到,获得积分10
27秒前
燕子完成签到,获得积分10
27秒前
28秒前
Hezzzz完成签到,获得积分10
28秒前
29秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838391
求助须知:如何正确求助?哪些是违规求助? 3380670
关于积分的说明 10515477
捐赠科研通 3100271
什么是DOI,文献DOI怎么找? 1707439
邀请新用户注册赠送积分活动 821718
科研通“疑难数据库(出版商)”最低求助积分说明 772907