An overview of challenges associated with exosomal miRNA isolation toward liquid biopsy-based ovarian cancer detection

液体活检 卵巢癌 分离(微生物学) 小RNA 癌症检测 微泡 医学 活检 外体 癌症 肿瘤科 病理 内科学 计算生物学 生物信息学 生物 基因 遗传学
作者
Manisha Sachan,Manisha Sachan
出处
期刊:Heliyon [Elsevier BV]
卷期号:: e30328-e30328
标识
DOI:10.1016/j.heliyon.2024.e30328
摘要

As one of the deadliest gynaecological cancers, ovarian cancer has been on the list. With lesser-known symptoms and lack of an accurate detection method, it is still difficult to catch it early. In terms of both the diagnosis and outlook for cancer, liquid biopsy has come a long way with significant advancements. Exosomes, extracellular components commonly shed by cancerous cells, are nucleic acid-rich particles floating in almost all body fluids and hold enormous promise, leading to minimallyinvasive molecular diagnostics. They have been shown as potential biomarkers in liquid biopsy, being implicated in tumour growth and metastasis. In order to address the drawbacks of ovarian cancer tumor heterogeneity, a liquid biopsy-based approach is being investigated by detecting cell-free nucleic acids, particularly non-coding RNAs, having the advantage of being less invasive and more prominent in nature. microRNAs are known to actively contribute to cancer development and their existence inside exosomes has also been made quite apparent which can be leveraged to diagnose and treat the disease. Extraction of miRNAs and exosomes is an arduous execution, and while other approaches have been investigated, none have produced results that are as encouraging due to limits in time commitment, yield, and, most significantly, damage to the exosomal structure resulting discrepancies in miRNA-based expression profiling for disease diagnosis. We have briefly outlined and reviewed the difficulties with exosome isolation techniques and the need for their standardization. The several widely used procedures and their drawbacks in terms of the exosomal purity they may produce have also been outlined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
皮皮鲁发布了新的文献求助10
2秒前
芬芬完成签到,获得积分10
2秒前
wu发布了新的文献求助10
3秒前
丘比特应助斯文的道罡采纳,获得10
3秒前
5秒前
5秒前
韩凡发布了新的文献求助10
6秒前
云仔发布了新的文献求助20
6秒前
皮皮鲁完成签到,获得积分10
7秒前
Snow完成签到,获得积分10
7秒前
科研通AI5应助虚拟的平安采纳,获得10
7秒前
1111发布了新的文献求助10
7秒前
wei发布了新的文献求助10
8秒前
香蕉觅云应助终梦采纳,获得10
8秒前
8秒前
安详的冰蝶完成签到 ,获得积分10
9秒前
Akim应助石莫言采纳,获得10
9秒前
daisy完成签到,获得积分10
10秒前
阿喵发布了新的文献求助10
11秒前
12秒前
12秒前
Vicente完成签到,获得积分10
13秒前
叶青完成签到,获得积分10
13秒前
13秒前
yzy完成签到,获得积分10
13秒前
暴躁的薯片完成签到,获得积分10
15秒前
风趣的鸭子完成签到,获得积分10
15秒前
WQ发布了新的文献求助10
15秒前
15秒前
shinedan82发布了新的文献求助10
16秒前
16秒前
科研通AI5应助无心的早晨采纳,获得10
17秒前
yzy发布了新的文献求助30
17秒前
zyp发布了新的文献求助50
17秒前
17秒前
吕德华完成签到,获得积分10
19秒前
Sara完成签到 ,获得积分10
19秒前
灼灼朗朗发布了新的文献求助10
20秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829930
求助须知:如何正确求助?哪些是违规求助? 3372490
关于积分的说明 10472794
捐赠科研通 3092018
什么是DOI,文献DOI怎么找? 1701700
邀请新用户注册赠送积分活动 818590
科研通“疑难数据库(出版商)”最低求助积分说明 770975