An expert system for highway construction: Multi-objective optimization using enhanced particle swarm for optimal equipment management

粒子群优化 计算机科学 专家系统 元启发式 多群优化 数学优化 运筹学 人工智能 机器学习 工程类 数学
作者
Ali Shehadeh,Odey Alshboul,Khaled F. Al-Shboul,Omer Tatari
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123621-123621 被引量:29
标识
DOI:10.1016/j.eswa.2024.123621
摘要

Expert systems play a crucial role in decision-making across various industries. This study introduces a novel expert system employing a tailored multi-objective optimization (MOO) model to address the intricate demands of highway projects. Integrating an advanced Enhanced Particle Swarm Optimization (IPSO) strategy, our model emphasizes key operations like excavation, hauling, grading, and compaction. Considering factors such as equipment count, velocity, and capacity, the system provides a comprehensive set of optimal solutions and reveals the Pareto frontier. In benchmarking our Improved Particle Swarm Optimization (IPSO) model against established methods, such as Genetic Algorithms (GA) by various researchers and the Guided Population Archive Whale Optimization Algorithm (GPAWOA), our approach significantly excelled. Our model demonstrated a 35.4%-time reduction and a 39.1% cost reduction while enhancing operational quality—starkly contrasting the modest improvements seen with other methods. This showcases the IPSO model's robustness in optimizing construction equipment utilization beyond current standards. Functioning as a decision-support tool, the expert system aids stakeholders in selecting optimal equipment setups, considering diverse attributes from equipment specifications to speed and volume. This application is exemplified through a real-world highway construction case study. The Case Study showcases the proposed model's remarkable impact, yielding a 35.4% time saving and a 16.8% cost decrease with Optimal Solution (I). In contrast, Optimal Solution (III) required 144.6% more time yet reduced costs by 39.1%. Furthermore, Optimal Solution (II) achieved a 4.6%-time reduction and a 32.4% cost decrease, demonstrating the system's versatility in managing constraints and optimizing decision-making processes across various project stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左左完成签到,获得积分10
1秒前
左左发布了新的文献求助30
5秒前
shelemi完成签到,获得积分10
6秒前
必中完成签到,获得积分10
7秒前
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
大腚疯猪应助科研通管家采纳,获得30
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
9秒前
打打应助科研通管家采纳,获得10
9秒前
9秒前
JamesPei应助aaaaa采纳,获得10
10秒前
李健的小迷弟应助panxi采纳,获得10
11秒前
Bin_Liu发布了新的文献求助10
11秒前
LL发布了新的文献求助10
12秒前
14秒前
LL完成签到,获得积分10
18秒前
18秒前
21秒前
22秒前
23秒前
ZY完成签到 ,获得积分10
23秒前
大模型应助cs采纳,获得10
23秒前
鱼yu完成签到,获得积分10
24秒前
25秒前
xxx发布了新的文献求助10
25秒前
立青发布了新的文献求助10
27秒前
STH发布了新的文献求助30
27秒前
王泽皓发布了新的文献求助10
28秒前
28秒前
30秒前
pcf发布了新的文献求助10
30秒前
32秒前
cs完成签到,获得积分10
32秒前
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802585
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337318
捐赠科研通 3064235
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010