Lightweight LLM-Based Anomaly Detection Framework for Securing IoTMD Enabled Diabetes Management Control Systems

计算机科学 异常检测 稳健性(进化) 更安全的 风险管理 计算机安全 风险分析(工程) 人工智能 医学 管理 经济 生物化学 基因 化学
作者
I Wayan Adi Juliawan Pawana,Philip Virgil Astillo,Ilsun You
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-12
标识
DOI:10.1109/jbhi.2025.3577604
摘要

The adoption of Implantable Internet of Things Medical Devices (IoTMD) has revolutionized chronic disease management by enabling continuous monitoring and real-time data transmission, allowing patients to optimize treatment strategies. However, these advancements come with significant security risks, as IoTMD systems remain vulnerable to cyber threats that could compromise patient data and device functionality. Addressing this challenge, this study evaluates the fine-tuning performance of various lightweight Large Language Models (LLMs) for anomaly detection in IoTMD-enabled diabetes management control systems (DMCS). Among the evaluated models, LLaMA 3.2 1B-Instruct, fine-tuned with Low-Rank Adaptation (LoRA), achieves the highest performance, with 99.91% accuracy, perfect precision (100.00%), and a false positive rate of 0%. Comparative analysis against other lightweight LLMs-GPT-2, Phi-1 (1.3B), and Gemma 2B-Instruct-as well as traditional deep learning models such as IL-MLP, IL-CNN, FL-MLP, and FL-CNN, highlights the superior adaptability and robustness of transformer-based architectures in anomaly detection. These findings demonstrate the effectiveness of LLMs in securing IoTMD systems, providing a powerful solution for mitigating cyber threats while ensuring system reliability. The results underscore the potential of LLM-based anomaly detection in strengthening IoTMD cybersecurity, paving the way for safer and more reliable implantable medical devices in modern healthcare settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
初雪应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
落雪完成签到 ,获得积分10
刚刚
初雪应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
现代听枫发布了新的文献求助10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
刚刚
TAO完成签到,获得积分10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
niNe3YUE应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
niNe3YUE应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
思源应助科研通管家采纳,获得10
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
iiddxx应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
toutou应助科研通管家采纳,获得10
1秒前
1秒前
toutou应助科研通管家采纳,获得10
1秒前
toutou应助科研通管家采纳,获得10
1秒前
toutou应助科研通管家采纳,获得10
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775681
求助须知:如何正确求助?哪些是违规求助? 5625393
关于积分的说明 15439397
捐赠科研通 4907935
什么是DOI,文献DOI怎么找? 2641025
邀请新用户注册赠送积分活动 1588807
关于科研通互助平台的介绍 1543677