Characterizing directional dynamics of semantic prediction based on inter-regional temporal generalization

400奈米 脑磁图 额下回 计算机科学 语音识别 名词 人工智能 分类器(UML) 认知心理学 模式识别(心理学) 脑电图 事件相关电位 功能磁共振成像 心理学 神经科学
作者
Fahimeh Mamashli,Sheraz Khan,Elaheh Hatamimajoumerd,Mainak Jas,Işıl Uluç,Kaisu Lankinen,Jonas Obleser,Angela D. Friederici,Burkhard Maeß,Jyrki Ahveninen
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:: e0230242025-e0230242025
标识
DOI:10.1523/jneurosci.0230-24.2025
摘要

The event-related potential/field component N400(m) is a widely accepted neural index for semantic prediction. Top-down input from inferior frontal areas to perceptual brain regions is hypothesized to play a key role in generating the N400, but testing this has been challenging due to limitations of causal connectivity estimation. We here provide new evidence for a predictive model of speech comprehension in which IFG activity feeds back to shape subsequent activity in STG/MTG. Magnetoencephalography (MEG) data was obtained from 21 participants (10 men, 11 women) during a classic N400 paradigm where the semantic predictability of a fixed target noun was manipulated in simple German sentences through the preceding verb. To estimate causality, we implemented a novel approach, based on machine learning and temporal generalization, to test the effect of inferior frontal gyrus (IFG) on temporal regions. A support vector machine (SVM) classifier was trained on IFG activity to classify less predicted (LP) and highly predicted (HP) nouns and tested on superior/middle temporal gyri (STG/MTG) activity, time-point by time-point. The reverse procedure was then performed to establish spatiotemporal evidence for or against causality. Significant decoding results were found in our bottom-up model, which were trained at hierarchically lower level areas (STG/MTG) and tested at the hierarchically higher IFG areas. Most interestingly, decoding accuracy also significantly exceeded chance level when the classifier was trained on IFG activity and tested on successive activity in STG/MTG. Our findings indicate dynamic top-down and bottom-up flow of information between IFG and temporal areas when generating semantic predictions. Significance Statement Semantic prediction helps anticipate the meaning of upcoming speech based on contextual information. How frontal and temporal cortices interact to enable this crucial function has remained elusive. We used novel data-driven MEG analyses to infer information flow from lower to higher areas (bottom-up) and vice versa (top-down) during semantic prediction. Using "earlier" MEG signals in one area to decode the "later" in another, we found that inferior frontal cortices feed predictions back to temporal cortices, to help decipher bottom-up signals going to the opposite direction. Our results provide experimental evidence on how top-down and bottom-up influences interact during language processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凊诏发布了新的文献求助10
1秒前
王一完成签到,获得积分10
3秒前
3秒前
xiaodong完成签到,获得积分10
4秒前
6秒前
6秒前
贾舒涵发布了新的文献求助10
6秒前
风趣谷秋发布了新的文献求助10
7秒前
湘湘完成签到,获得积分10
7秒前
WHY完成签到 ,获得积分10
8秒前
8秒前
8秒前
渭南第一大帅逼完成签到,获得积分10
8秒前
子车碧琴完成签到,获得积分20
9秒前
王一发布了新的文献求助10
9秒前
JHL发布了新的文献求助10
10秒前
10秒前
斯文败类应助我爱静静采纳,获得10
10秒前
ASUNA完成签到,获得积分10
11秒前
FashionBoy应助沐月星辰采纳,获得10
11秒前
所所应助weiyilin采纳,获得10
12秒前
RAY完成签到,获得积分10
12秒前
llc完成签到 ,获得积分10
12秒前
13秒前
Susie_Xie发布了新的文献求助10
15秒前
wanci应助yanglin采纳,获得10
16秒前
Estrella发布了新的文献求助10
18秒前
无花果应助小鲨鱼采纳,获得10
18秒前
小羊关注了科研通微信公众号
18秒前
沐月星辰完成签到,获得积分10
22秒前
23秒前
23秒前
25秒前
25秒前
27秒前
如此如此应助风趣谷秋采纳,获得10
27秒前
称心的百川完成签到,获得积分20
27秒前
yanglin发布了新的文献求助10
27秒前
细腻的金毛完成签到,获得积分10
28秒前
缪风华发布了新的文献求助10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819142
求助须知:如何正确求助?哪些是违规求助? 3362242
关于积分的说明 10416115
捐赠科研通 3080466
什么是DOI,文献DOI怎么找? 1694492
邀请新用户注册赠送积分活动 814668
科研通“疑难数据库(出版商)”最低求助积分说明 768388