已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Characterizing directional dynamics of semantic prediction based on inter-regional temporal generalization

400奈米 脑磁图 额下回 计算机科学 语音识别 名词 人工智能 分类器(UML) 认知心理学 模式识别(心理学) 脑电图 事件相关电位 功能磁共振成像 心理学 神经科学
作者
Fahimeh Mamashli,Sheraz Khan,Elaheh Hatamimajoumerd,Mainak Jas,Işıl Uluç,Kaisu Lankinen,Jonas Obleser,Angela D. Friederici,Burkhard Maeß,Jyrki Ahveninen
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:: e0230242025-e0230242025
标识
DOI:10.1523/jneurosci.0230-24.2025
摘要

The event-related potential/field component N400(m) is a widely accepted neural index for semantic prediction. Top-down input from inferior frontal areas to perceptual brain regions is hypothesized to play a key role in generating the N400, but testing this has been challenging due to limitations of causal connectivity estimation. We here provide new evidence for a predictive model of speech comprehension in which IFG activity feeds back to shape subsequent activity in STG/MTG. Magnetoencephalography (MEG) data was obtained from 21 participants (10 men, 11 women) during a classic N400 paradigm where the semantic predictability of a fixed target noun was manipulated in simple German sentences through the preceding verb. To estimate causality, we implemented a novel approach, based on machine learning and temporal generalization, to test the effect of inferior frontal gyrus (IFG) on temporal regions. A support vector machine (SVM) classifier was trained on IFG activity to classify less predicted (LP) and highly predicted (HP) nouns and tested on superior/middle temporal gyri (STG/MTG) activity, time-point by time-point. The reverse procedure was then performed to establish spatiotemporal evidence for or against causality. Significant decoding results were found in our bottom-up model, which were trained at hierarchically lower level areas (STG/MTG) and tested at the hierarchically higher IFG areas. Most interestingly, decoding accuracy also significantly exceeded chance level when the classifier was trained on IFG activity and tested on successive activity in STG/MTG. Our findings indicate dynamic top-down and bottom-up flow of information between IFG and temporal areas when generating semantic predictions. Significance Statement Semantic prediction helps anticipate the meaning of upcoming speech based on contextual information. How frontal and temporal cortices interact to enable this crucial function has remained elusive. We used novel data-driven MEG analyses to infer information flow from lower to higher areas (bottom-up) and vice versa (top-down) during semantic prediction. Using "earlier" MEG signals in one area to decode the "later" in another, we found that inferior frontal cortices feed predictions back to temporal cortices, to help decipher bottom-up signals going to the opposite direction. Our results provide experimental evidence on how top-down and bottom-up influences interact during language processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助YS采纳,获得10
1秒前
2秒前
上官若男应助合适的海安采纳,获得10
4秒前
4秒前
tanlinxin完成签到,获得积分10
6秒前
精明黄蜂完成签到 ,获得积分10
6秒前
潇洒秋荷完成签到 ,获得积分10
8秒前
8秒前
lhr发布了新的文献求助10
9秒前
9秒前
10秒前
山野有雾都应助自信的宝采纳,获得30
12秒前
传奇3应助T1aNer299采纳,获得10
13秒前
娜娜发布了新的文献求助10
13秒前
LLL发布了新的文献求助10
16秒前
16秒前
YS发布了新的文献求助10
23秒前
璐璇完成签到,获得积分10
24秒前
whr完成签到,获得积分10
25秒前
27秒前
树小夏完成签到,获得积分10
27秒前
JL完成签到,获得积分10
29秒前
仰勒完成签到 ,获得积分10
29秒前
youngyang完成签到 ,获得积分10
30秒前
哪有人不疯的完成签到 ,获得积分10
30秒前
大金鱼发布了新的文献求助10
31秒前
qzp完成签到 ,获得积分10
31秒前
32秒前
32秒前
32秒前
33秒前
充电宝应助bukeshuo采纳,获得10
35秒前
T1aNer299发布了新的文献求助10
35秒前
JamesPei应助吃死你啦啦采纳,获得10
36秒前
外向不愁发布了新的文献求助10
36秒前
lhr完成签到,获得积分10
36秒前
HYQ完成签到 ,获得积分10
36秒前
42秒前
HMYX完成签到 ,获得积分10
42秒前
立青完成签到 ,获得积分10
43秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345477
求助须知:如何正确求助?哪些是违规求助? 4480424
关于积分的说明 13946213
捐赠科研通 4377929
什么是DOI,文献DOI怎么找? 2405477
邀请新用户注册赠送积分活动 1398087
关于科研通互助平台的介绍 1370475