Diagnostic risk prediction models for upper gastrointestinal cancers: A systematic review

医学 逻辑回归 预测建模 胰腺癌 胆囊癌 梅德林 癌症 风险评估 内科学 胆囊 肿瘤科 重症监护医学 机器学习 计算机科学 计算机安全 政治学 法学
作者
Tyler S. Saunders,Pawandeep Virpal,Maria Andreou,Asha Parmar,Christina Derksen,Oleg Blyuss,Fiona M Walter,Garth Funston
出处
期刊:Cancer Epidemiology, Biomarkers & Prevention [American Association for Cancer Research]
标识
DOI:10.1158/1055-9965.epi-24-1714
摘要

Abstract Upper gastrointestinal (UGI) cancers are often detected late. Risk prediction models could facilitate earlier detection by identifying patients at risk for further investigation. We systematically reviewed evidence on UGI diagnostic risk prediction models. A search of MEDLINE, Embase, and CENTRAL was conducted for studies reporting on the development and/or validation of diagnostic risk prediction models for UGI cancers (pancreatic, gastric, oesophageal, gallbladder, and/or biliary tract). Studies had to report at least one quantitative measure of model performance to be eligible for inclusion. A total of 82 studies describing 162 UGI risk models were included. Models predicted gallbladder (n=6), gastric (n=25), oesophageal (n=34), gastro-oesophageal (n=14), and pancreatic (n=83) cancers. Most models used logistic regression, but machine learning was increasingly used from 2019. In total, 366 unique variables were incorporated across models. Only 33 models were externally validated, with 15 achieving an AUC ≥0.80. This review highlights that several models perform well in predicting UGI cancers on external validation. Future research is needed to compare the best performing models and assess their clinical utility, acceptability and cost effectiveness. Given the significant overlap in at risk populations and predictors across UGI cancers, there may also be scope to develop UGI ‘multi-cancer’ models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
5秒前
Akim应助单薄的静丹采纳,获得20
5秒前
苏silence发布了新的文献求助10
6秒前
科研通AI5应助雅雅采纳,获得10
7秒前
Dragon发布了新的文献求助10
8秒前
xiaolan发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
14秒前
14秒前
vvvvvv发布了新的文献求助10
16秒前
16秒前
香蕉觅云应助卢莹采纳,获得10
17秒前
苏silence发布了新的文献求助10
18秒前
Ava应助hfun采纳,获得10
19秒前
香蕉奇迹发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
传奇3应助xiaolan采纳,获得10
20秒前
箜箜完成签到,获得积分20
21秒前
Lea_at_发布了新的文献求助10
21秒前
25秒前
素直完成签到,获得积分20
26秒前
Dragon完成签到,获得积分10
26秒前
28秒前
28秒前
科研通AI5应助拉基采纳,获得20
32秒前
lalalala完成签到,获得积分10
33秒前
34秒前
YY发布了新的文献求助10
34秒前
34秒前
bkagyin应助vvvvvv采纳,获得10
34秒前
柳叶刀小猪完成签到,获得积分0
35秒前
xiaolan完成签到,获得积分10
35秒前
妮妮发布了新的文献求助10
38秒前
小马甲应助ttt采纳,获得10
40秒前
苏silence发布了新的文献求助10
42秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865555
求助须知:如何正确求助?哪些是违规求助? 3407973
关于积分的说明 10656213
捐赠科研通 3131959
什么是DOI,文献DOI怎么找? 1727446
邀请新用户注册赠送积分活动 832314
科研通“疑难数据库(出版商)”最低求助积分说明 780189