Highly accurate positioning of industrial robots is crucial to performing industrial operations with high quality. This paper presents a mechanical modification to an industrial robot aiming at enhancing the system actuation resolution, thereby enhancing its positional accuracy. The industrial robot under consideration is a six-degrees of freedom (DoF) robot with revolute joints. By integrating a linear stage, a prismatic joint is introduced to the robot’s end effector, reconfiguring it into a 7 DoF system with more precise step size capabilities. To improve the positional accuracy of the overall system, a closed-loop control structure is chosen. Positional feedback is provided using an industrial laser tracker. Initially, a multi-layer perceptron neural network (MLPNN) is used to identify the forward kinematics (FK) of the overall 6RP robotic system. The FK of the industrial robot using the pretrained MLPNN is then used online to compute the real-time sensitivity of positional error to changes in the joint angle values of the industrial robot and displacements of the prismatic joint. Different trajectories are used to test the accuracy of the proposed positioning algorithm. From the implementation results obtained using the proposed control structure, it is observed that the accuracy of the industrial robot improves significantly. Statistical results for five different points selected from the ISO 9283 trajectory over 30 times of measurements show an 82% improvement for the measurements using the proposed approach as compared to the original industrial robot controller.