亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent diagnosis of left ventricular hypertrophy using transthoracic echocardiography videos

医学 肥厚性心肌病 左心室肥大 心脏病学 内科学 分割 室致密化不全 经胸超声心动图 室间隔 放射科 心肌病 人工智能 心力衰竭 计算机科学 心室 血压
作者
Zhou Xu,Fei Yu,Bo Zhang,Qi Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107182-107182 被引量:15
标识
DOI:10.1016/j.cmpb.2022.107182
摘要

Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular events and mortality. Pathological LVH can be caused by various diseases. In this study, we explored the possibility of using time and frequency domain analysis of myocardial radiomics features for patients with LVH in differentiating hypertrophic cardiomyopathy (HCM), hypertensive heart disease (HHD) and uremic cardiomyopathy (UCM) based on transthoracic echocardiography (TTE). This was the first study to explore TTE myocardial time and frequency domain analyses for multiple LVH etiology differentiation.We proposed an artificially intelligent diagnosis system based on radiomics techniques for differentiating HCM, HHD and UCM on TTE videos of the apical four-chamber view, which mainly included interventricular septum (IVS) segmentation, feature extraction and classification. We used two independent cohorts, one with 150 patients, including 50 HHD, 50 HCM and 50 UCM, for segmentation training and testing, and another with 149 patients (namely the main cohort), including 50 HHD, 46 HCM and 53 UCM, for classification training and testing after segmentation and feature extraction. Firstly, the U-Net, Residual U-Net (ResUNet) and nnU-Net were trained and tested to segment the IVS on TTE still images in the first cohort. Then the trained model with the best segmentation performance was further used for IVS prediction of ordered TTE images in video sequences in the main cohort. The post-processing was used to eliminate the noisy debris by selecting the maximum connected region and smoothing the edges of the predicted IVS region. Secondly, static radiomics features were extracted from the IVS of ordered TTE images in each video sequence, and subsequently the time and frequency domain features were further extracted from each time series of a static radiomics feature in the video sequence. Finally, the point-wise gated Boltzmann machine (PGBM) was used to learn and fuse the time and frequency domain features, and the support vector machine was used to classify the learned features for LVH diagnosis. The classification was performed with five-fold cross validation.The ResUNet showed the best segmentation performance, with Dice coefficient, sensitivity, specificity and accuracy of 0.817, 76.3%, 99.6% and 98.6%, respectively. With post-processing, the Dice coefficient, sensitivity, specificity and accuracy of the ResUNet were further improved to 0.839, 77.0%, 99.8%, and 98.8%, respectively. The classification areas under the receiver operating characteristic curves (AUCs) were 0.838 ± 0.049 for HHD vs. HCM, 0.868 ± 0.042 for HCM vs. UCM and 0.701 ± 0.140 for HHD vs. UCM.In this work, we proposed an intelligent identification system for LVH etiology classification based on routine TTE video images with good diagnostic performance. This deep learning method is feasible in automatic TTE images interpretation and expected to assist clinicians in detecting the primary cause of LVH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助张宇采纳,获得10
18秒前
Hayat发布了新的文献求助20
1分钟前
鱼鱼完成签到 ,获得积分10
1分钟前
科研通AI2S应助斯文天曼采纳,获得10
1分钟前
1分钟前
白椋发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
白椋完成签到,获得积分10
2分钟前
张宇发布了新的文献求助10
2分钟前
张宇完成签到,获得积分10
2分钟前
3分钟前
斯文天曼发布了新的文献求助10
3分钟前
3分钟前
幽默香旋发布了新的文献求助30
3分钟前
从来都不会放弃zr完成签到,获得积分10
3分钟前
大方的羊青完成签到,获得积分10
3分钟前
追寻夜香完成签到 ,获得积分10
4分钟前
火星上的幻梦完成签到,获得积分10
5分钟前
可爱的函函应助zrm采纳,获得10
5分钟前
回忆敌不过尿意完成签到,获得积分10
5分钟前
英俊的铭应助hehe采纳,获得10
5分钟前
5分钟前
zrm发布了新的文献求助10
5分钟前
5分钟前
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
斯文天曼发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
如意秋珊完成签到 ,获得积分10
6分钟前
souther完成签到,获得积分0
6分钟前
躺不平也卷不动的瓜子完成签到 ,获得积分10
7分钟前
斯文天曼完成签到,获得积分10
7分钟前
qqq完成签到,获得积分10
7分钟前
catherine完成签到,获得积分10
7分钟前
111111111完成签到,获得积分10
7分钟前
8分钟前
8分钟前
科研通AI6应助倪妮采纳,获得10
8分钟前
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137548
求助须知:如何正确求助?哪些是违规求助? 4337298
关于积分的说明 13511354
捐赠科研通 4175927
什么是DOI,文献DOI怎么找? 2289778
邀请新用户注册赠送积分活动 1290300
关于科研通互助平台的介绍 1232072