亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent diagnosis of left ventricular hypertrophy using transthoracic echocardiography videos

医学 肥厚性心肌病 左心室肥大 心脏病学 内科学 分割 室致密化不全 经胸超声心动图 室间隔 放射科 心肌病 人工智能 心力衰竭 计算机科学 心室 血压
作者
Zhou Xu,Fei Yu,Bo Zhang,Qi Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107182-107182 被引量:9
标识
DOI:10.1016/j.cmpb.2022.107182
摘要

Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular events and mortality. Pathological LVH can be caused by various diseases. In this study, we explored the possibility of using time and frequency domain analysis of myocardial radiomics features for patients with LVH in differentiating hypertrophic cardiomyopathy (HCM), hypertensive heart disease (HHD) and uremic cardiomyopathy (UCM) based on transthoracic echocardiography (TTE). This was the first study to explore TTE myocardial time and frequency domain analyses for multiple LVH etiology differentiation.We proposed an artificially intelligent diagnosis system based on radiomics techniques for differentiating HCM, HHD and UCM on TTE videos of the apical four-chamber view, which mainly included interventricular septum (IVS) segmentation, feature extraction and classification. We used two independent cohorts, one with 150 patients, including 50 HHD, 50 HCM and 50 UCM, for segmentation training and testing, and another with 149 patients (namely the main cohort), including 50 HHD, 46 HCM and 53 UCM, for classification training and testing after segmentation and feature extraction. Firstly, the U-Net, Residual U-Net (ResUNet) and nnU-Net were trained and tested to segment the IVS on TTE still images in the first cohort. Then the trained model with the best segmentation performance was further used for IVS prediction of ordered TTE images in video sequences in the main cohort. The post-processing was used to eliminate the noisy debris by selecting the maximum connected region and smoothing the edges of the predicted IVS region. Secondly, static radiomics features were extracted from the IVS of ordered TTE images in each video sequence, and subsequently the time and frequency domain features were further extracted from each time series of a static radiomics feature in the video sequence. Finally, the point-wise gated Boltzmann machine (PGBM) was used to learn and fuse the time and frequency domain features, and the support vector machine was used to classify the learned features for LVH diagnosis. The classification was performed with five-fold cross validation.The ResUNet showed the best segmentation performance, with Dice coefficient, sensitivity, specificity and accuracy of 0.817, 76.3%, 99.6% and 98.6%, respectively. With post-processing, the Dice coefficient, sensitivity, specificity and accuracy of the ResUNet were further improved to 0.839, 77.0%, 99.8%, and 98.8%, respectively. The classification areas under the receiver operating characteristic curves (AUCs) were 0.838 ± 0.049 for HHD vs. HCM, 0.868 ± 0.042 for HCM vs. UCM and 0.701 ± 0.140 for HHD vs. UCM.In this work, we proposed an intelligent identification system for LVH etiology classification based on routine TTE video images with good diagnostic performance. This deep learning method is feasible in automatic TTE images interpretation and expected to assist clinicians in detecting the primary cause of LVH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助景胜杰采纳,获得10
1秒前
12秒前
废物点昕关注了科研通微信公众号
14秒前
15秒前
baiyeok发布了新的文献求助10
21秒前
22秒前
景胜杰发布了新的文献求助10
25秒前
威武的冷霜完成签到,获得积分10
34秒前
41秒前
44秒前
baiyeok完成签到,获得积分10
47秒前
耶耶耶完成签到 ,获得积分10
50秒前
科研通AI5应助baiyeok采纳,获得10
52秒前
852应助机灵的夜梦采纳,获得10
1分钟前
希望天下0贩的0应助Alicia采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
schahaha发布了新的文献求助10
1分钟前
YY发布了新的文献求助10
1分钟前
lianyang发布了新的文献求助10
1分钟前
万能图书馆应助lianyang采纳,获得10
1分钟前
1分钟前
庄生发布了新的文献求助10
1分钟前
善学以致用应助庄生采纳,获得10
1分钟前
13656479046完成签到 ,获得积分10
2分钟前
zyjsunye完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
baiyeok发布了新的文献求助10
2分钟前
schahaha发布了新的文献求助10
2分钟前
jack发布了新的文献求助10
2分钟前
2分钟前
Lone完成签到,获得积分10
2分钟前
2分钟前
吾日三省吾身完成签到 ,获得积分10
2分钟前
柑橘味的二锅头完成签到,获得积分10
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4457368
求助须知:如何正确求助?哪些是违规求助? 3922227
关于积分的说明 12171251
捐赠科研通 3573335
什么是DOI,文献DOI怎么找? 1962880
邀请新用户注册赠送积分活动 1002089
科研通“疑难数据库(出版商)”最低求助积分说明 896781