Intelligent diagnosis of left ventricular hypertrophy using transthoracic echocardiography videos

医学 肥厚性心肌病 左心室肥大 心脏病学 内科学 分割 室致密化不全 经胸超声心动图 室间隔 放射科 心肌病 人工智能 心力衰竭 计算机科学 心室 血压
作者
Zhou Xu,Fei Yu,Bo Zhang,Qi Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107182-107182 被引量:9
标识
DOI:10.1016/j.cmpb.2022.107182
摘要

Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular events and mortality. Pathological LVH can be caused by various diseases. In this study, we explored the possibility of using time and frequency domain analysis of myocardial radiomics features for patients with LVH in differentiating hypertrophic cardiomyopathy (HCM), hypertensive heart disease (HHD) and uremic cardiomyopathy (UCM) based on transthoracic echocardiography (TTE). This was the first study to explore TTE myocardial time and frequency domain analyses for multiple LVH etiology differentiation.We proposed an artificially intelligent diagnosis system based on radiomics techniques for differentiating HCM, HHD and UCM on TTE videos of the apical four-chamber view, which mainly included interventricular septum (IVS) segmentation, feature extraction and classification. We used two independent cohorts, one with 150 patients, including 50 HHD, 50 HCM and 50 UCM, for segmentation training and testing, and another with 149 patients (namely the main cohort), including 50 HHD, 46 HCM and 53 UCM, for classification training and testing after segmentation and feature extraction. Firstly, the U-Net, Residual U-Net (ResUNet) and nnU-Net were trained and tested to segment the IVS on TTE still images in the first cohort. Then the trained model with the best segmentation performance was further used for IVS prediction of ordered TTE images in video sequences in the main cohort. The post-processing was used to eliminate the noisy debris by selecting the maximum connected region and smoothing the edges of the predicted IVS region. Secondly, static radiomics features were extracted from the IVS of ordered TTE images in each video sequence, and subsequently the time and frequency domain features were further extracted from each time series of a static radiomics feature in the video sequence. Finally, the point-wise gated Boltzmann machine (PGBM) was used to learn and fuse the time and frequency domain features, and the support vector machine was used to classify the learned features for LVH diagnosis. The classification was performed with five-fold cross validation.The ResUNet showed the best segmentation performance, with Dice coefficient, sensitivity, specificity and accuracy of 0.817, 76.3%, 99.6% and 98.6%, respectively. With post-processing, the Dice coefficient, sensitivity, specificity and accuracy of the ResUNet were further improved to 0.839, 77.0%, 99.8%, and 98.8%, respectively. The classification areas under the receiver operating characteristic curves (AUCs) were 0.838 ± 0.049 for HHD vs. HCM, 0.868 ± 0.042 for HCM vs. UCM and 0.701 ± 0.140 for HHD vs. UCM.In this work, we proposed an intelligent identification system for LVH etiology classification based on routine TTE video images with good diagnostic performance. This deep learning method is feasible in automatic TTE images interpretation and expected to assist clinicians in detecting the primary cause of LVH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
婉莹完成签到 ,获得积分0
4秒前
落寞代桃发布了新的文献求助10
7秒前
lili完成签到 ,获得积分10
11秒前
由由完成签到 ,获得积分10
14秒前
yinyin完成签到 ,获得积分10
15秒前
STH完成签到 ,获得积分10
21秒前
文静灵阳完成签到 ,获得积分10
24秒前
风格完成签到,获得积分10
25秒前
lixuan完成签到 ,获得积分10
28秒前
美满的小蘑菇完成签到 ,获得积分10
29秒前
七七完成签到 ,获得积分10
33秒前
遇见完成签到 ,获得积分10
37秒前
38秒前
科研临床两手抓完成签到 ,获得积分10
39秒前
沧海云完成签到 ,获得积分10
44秒前
欧阳小枫完成签到 ,获得积分10
45秒前
田様应助ksak607155采纳,获得10
51秒前
林好人完成签到,获得积分10
54秒前
foyefeng完成签到 ,获得积分10
58秒前
激昂的秀发完成签到,获得积分10
1分钟前
1分钟前
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
1分钟前
ksak607155发布了新的文献求助10
1分钟前
丝丢皮得完成签到 ,获得积分10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
lili完成签到,获得积分10
1分钟前
diraczh发布了新的文献求助10
1分钟前
科研通AI2S应助庄严采纳,获得10
1分钟前
ivyjianjie完成签到 ,获得积分10
1分钟前
研友_8yRY0L发布了新的文献求助10
1分钟前
1分钟前
ycc完成签到,获得积分10
1分钟前
爱听歌素关注了科研通微信公众号
1分钟前
王医生1650完成签到 ,获得积分10
1分钟前
634301059完成签到 ,获得积分10
1分钟前
小叙完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780879
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226699
捐赠科研通 3041539
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758732