已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection of mild cognitive impairment in type 2 diabetes mellitus based on machine learning using privileged information

人工智能 支持向量机 2型糖尿病 痴呆 机器学习 计算机科学 神经心理学 神经影像学 随机森林 认知 模式识别(心理学) 心理学 医学 糖尿病 精神科 病理 内分泌学 疾病
作者
Shuiwei Xia,Yu Zhang,Bo Peng,Xianghua Hu,Limin Zhou,Chunmiao Chen,Chenying Lu,Minjiang Chen,Chunying Pang,Yakang Dai,Jiansong Ji
出处
期刊:Neuroscience Letters [Elsevier BV]
卷期号:791: 136908-136908 被引量:7
标识
DOI:10.1016/j.neulet.2022.136908
摘要

Type 2 diabetes mellitus (T2DM) patients may develop into mild cognitive impairment (MCI) or even dementia. However, there is lack of reliable machine learning model for detection MCI in T2DM patients based on machine learning method. In addition, the brain network changes associated with MCI have not been studied. The aim of this study is to develop a machine learning based algorithm to help detect MCI in T2DM. There are 164 participants were included in this study. They were divided into T2DM-MCI (n = 56), T2DM-nonMCI (n = 49), and normal controls (n = 59) according to the neuropsychological evaluation. Functional connectivity of each participant was constructed based on resting-state magnetic resonance imaging (rs-fMRI). Feature selection was used to reduce the feature dimension. Then the selected features were set into the cascaded multi-column random vector functional link network (RVFL) classifier model using privileged information. Finally, the optimal model was trained and the classification performance was obtained using the testing data. The results show that the proposed algorithm has outstanding performance compared with classic methods. The classification accuracy of 73.18 % (T2DM-MCI vs NC) and 79.42 % (T2DM-MCI vs T2DM-nonMCI) were achieved. The functional connectivity related to T2DM-MCI mainly distribute in the frontal lobe, temporal lobe, and central region (motor cortex), which could be used as neuroimaging biomarkers to recognize MCI in T2DM patients. This study provides a machine learning model for diagnosis of MCI in T2DM patients and has potential clinical significance for timely intervention and treatment to delay the development of MCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责的皮卡丘给负责的皮卡丘的求助进行了留言
2秒前
Johnason_ZC完成签到,获得积分10
2秒前
2秒前
自信寻真发布了新的文献求助10
3秒前
崔灿完成签到 ,获得积分10
3秒前
孙意冉完成签到,获得积分10
4秒前
4秒前
酒醉的蝴蝶完成签到 ,获得积分10
5秒前
哲000完成签到 ,获得积分10
5秒前
搜集达人应助叽歪提采纳,获得10
6秒前
孙意冉发布了新的文献求助10
6秒前
LEMON完成签到,获得积分10
8秒前
能干的跳跳糖完成签到,获得积分10
12秒前
12秒前
南笺完成签到 ,获得积分10
12秒前
科研通AI2S应助孙意冉采纳,获得10
14秒前
pK完成签到 ,获得积分10
15秒前
WZH发布了新的文献求助30
16秒前
自信寻真完成签到,获得积分20
17秒前
小袁完成签到 ,获得积分10
19秒前
19秒前
20秒前
herococa应助鸭鸭采纳,获得10
21秒前
meimei完成签到 ,获得积分10
23秒前
GPTea应助科研通管家采纳,获得20
23秒前
Ak完成签到,获得积分0
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
cyn完成签到,获得积分10
25秒前
弦和发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
七色光完成签到,获得积分10
26秒前
刺五加发布了新的文献求助10
26秒前
27秒前
澳澳完成签到,获得积分10
28秒前
WZH完成签到,获得积分10
28秒前
Honor完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063155
求助须知:如何正确求助?哪些是违规求助? 4286820
关于积分的说明 13357889
捐赠科研通 4104806
什么是DOI,文献DOI怎么找? 2247672
邀请新用户注册赠送积分活动 1253210
关于科研通互助平台的介绍 1184218