RMG Database for Chemical Property Prediction

热化学 估计员 计算机科学 数据库 加法函数 溶剂化 化学 数据挖掘 热力学 数学 溶剂 物理化学 物理 统计 有机化学 数学分析
作者
Matthew S. Johnson,Xiaorui Dong,Alon Grinberg Dana,Yunsie Chung,David Farina,Ryan J. Gillis,Mengjie Liu,Nathan W. Yee,Katrín Blöndal,Emily Mazeau,Colin A. Grambow,A. Mark Payne,Kevin A. Spiekermann,Hao-Wei Pang,C. Franklin Goldsmith,Richard H. West,William H. Green
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (20): 4906-4915 被引量:20
标识
DOI:10.1021/acs.jcim.2c00965
摘要

The Reaction Mechanism Generator (RMG) database for chemical property prediction is presented. The RMG database consists of curated datasets and estimators for accurately predicting the parameters necessary for constructing a wide variety of chemical kinetic mechanisms. These datasets and estimators are mostly published and enable prediction of thermodynamics, kinetics, solvation effects, and transport properties. For thermochemistry prediction, the RMG database contains 45 libraries of thermochemical parameters with a combination of 4564 entries and a group additivity scheme with 9 types of corrections including radical, polycyclic, and surface absorption corrections with 1580 total curated groups and parameters for a graph convolutional neural network trained using transfer learning from a set of >130 000 DFT calculations to 10 000 high-quality values. Correction schemes for solvent-solute effects, important for thermochemistry in the liquid phase, are available. They include tabulated values for 195 pure solvents and 152 common solutes and a group additivity scheme for predicting the properties of arbitrary solutes. For kinetics estimation, the database contains 92 libraries of kinetic parameters containing a combined 21 000 reactions and contains rate rule schemes for 87 reaction classes trained on 8655 curated training reactions. Additional libraries and estimators are available for transport properties. All of this information is easily accessible through the graphical user interface at https://rmg.mit.edu. Bulk or on-the-fly use can be facilitated by interfacing directly with the RMG Python package which can be installed from Anaconda. The RMG database provides kineticists with easy access to estimates of the many parameters they need to model and analyze kinetic systems. This helps to speed up and facilitate kinetic analysis by enabling easy hypothesis testing on pathways, by providing parameters for model construction, and by providing checks on kinetic parameters from other sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安安完成签到 ,获得积分10
1秒前
淡然冬灵发布了新的文献求助80
1秒前
hahahahaha完成签到,获得积分10
3秒前
hhw完成签到,获得积分10
4秒前
5秒前
慕青应助lcj采纳,获得10
6秒前
7秒前
我是老大应助panting采纳,获得10
8秒前
9秒前
9秒前
xianyaoz完成签到 ,获得积分0
9秒前
xiaon完成签到,获得积分20
10秒前
LEETHEO发布了新的文献求助10
10秒前
NeuroYan发布了新的文献求助10
10秒前
ivylyu完成签到 ,获得积分10
11秒前
xiaon发布了新的文献求助30
12秒前
14秒前
15秒前
provin完成签到,获得积分10
16秒前
17秒前
cdercder应助恋雅颖月采纳,获得10
17秒前
可乐不加冰完成签到 ,获得积分10
19秒前
嘟嘟豆806完成签到 ,获得积分10
20秒前
小爱完成签到 ,获得积分10
20秒前
小马甲应助踏实的灵阳采纳,获得10
21秒前
lcj发布了新的文献求助10
22秒前
梨花雨凉完成签到 ,获得积分10
23秒前
动听帆布鞋完成签到,获得积分10
24秒前
25秒前
奔跑的青霉素完成签到 ,获得积分10
27秒前
无花果应助LLH采纳,获得10
30秒前
ryan1300完成签到 ,获得积分10
31秒前
Li发布了新的文献求助10
32秒前
xu发布了新的文献求助10
32秒前
33秒前
34秒前
38秒前
cdercder应助小泓采纳,获得10
39秒前
Li完成签到,获得积分10
40秒前
happily遇发布了新的文献求助10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783118
求助须知:如何正确求助?哪些是违规求助? 3328459
关于积分的说明 10236592
捐赠科研通 3043558
什么是DOI,文献DOI怎么找? 1670577
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119