Constructing hierarchical attentive functional brain networks for early AD diagnosis

节点(物理) 人工智能 等级制度 计算机科学 代表(政治) 地图集(解剖学) 机器学习 政治学 市场经济 结构工程 生物 政治 工程类 古生物学 经济 法学
作者
Jianjia Zhang,Yunan Guo,Luping Zhou,Lei Wang,Wei‐Wen Wu,Dinggang Shen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:94: 103137-103137 被引量:11
标识
DOI:10.1016/j.media.2024.103137
摘要

Analyzing functional brain networks (FBN) with deep learning has demonstrated great potential for brain disorder diagnosis. The conventional construction of FBN is typically conducted at a single scale with a predefined brain region atlas. However, numerous studies have identified that the structure and function of the brain are hierarchically organized in nature. This urges the need of representing FBN in a hierarchical manner for more effective analysis of the complementary diagnostic insights at different scales. To this end, this paper proposes to build hierarchical FBNs adaptively within the Transformer framework. Specifically, a sparse attention-based node-merging module is designed to work alongside the conventional network feature extraction modules in each layer. The proposed module generates coarser nodes for further FBN construction and analysis by combining fine-grained nodes. By stacking multiple such layers, a hierarchical representation of FBN can be adaptively learned in an end-to-end manner. The hierarchical structure can not only integrate the complementary information from multiscale FBN for joint analysis, but also reduce the model complexity due to decreasing node sizes. Moreover, this paper argues that the nodes defined by the existing atlases are not necessarily the optimal starting level to build FBN hierarchy and exploring finer nodes may further enrich the FBN representation. In this regard, each predefined node in an atlas is split into multiple sub-nodes, overcoming the scale limitation of the existing atlases. Extensive experiments conducted on various data sets consistently demonstrate the superior performance of the proposed method over the competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助baili123采纳,获得10
1秒前
远山笑你完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
RPG发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
格格巫发布了新的文献求助10
4秒前
烟花应助lemon 1118采纳,获得10
5秒前
无花果应助瘦瘦的艳采纳,获得10
5秒前
6秒前
QQ星发布了新的文献求助10
6秒前
Choi发布了新的文献求助10
6秒前
7秒前
李宗福关注了科研通微信公众号
7秒前
啾啾咪咪发布了新的文献求助10
8秒前
Fangli发布了新的文献求助10
9秒前
祁忆发布了新的文献求助10
10秒前
友好元蝶完成签到 ,获得积分10
11秒前
慕青应助silsotiscolor采纳,获得10
11秒前
tao发布了新的文献求助10
12秒前
13秒前
jun_shen完成签到,获得积分10
13秒前
Gao完成签到 ,获得积分10
14秒前
15秒前
端庄的绿竹完成签到,获得积分10
16秒前
瘦瘦的艳发布了新的文献求助10
16秒前
丘比特应助飞翔的鸣采纳,获得10
17秒前
lyuyl发布了新的文献求助10
18秒前
Sunny完成签到,获得积分10
19秒前
大个应助QQ星采纳,获得10
19秒前
完美世界应助xixi采纳,获得10
20秒前
20秒前
啾啾咪咪完成签到,获得积分10
20秒前
21秒前
tent01发布了新的文献求助10
21秒前
李健应助wenxianxiazai123采纳,获得10
24秒前
科研通AI6应助科研小锄头采纳,获得10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543