Convolutional neural network based on the fusion of image classification and segmentation module for weed detection in alfalfa

卷积神经网络 分割 人工智能 残差神经网络 杂草 模式识别(心理学) 计算机科学 图像分割 农学 生物
作者
Jie Yang,Yong Chen,Jialin Yu
出处
期刊:Pest Management Science [Wiley]
卷期号:80 (6): 2751-2760 被引量:7
标识
DOI:10.1002/ps.7979
摘要

Abstract BACKGROUND Accurate and reliable weed detection in real time is essential for realizing autonomous precision herbicide application. The objective of this research was to propose a novel neural network architecture to improve the detection accuracy for broadleaf weeds growing in alfalfa. RESULTS A novel neural network, ResNet‐101‐segmentation, was developed by fusing an image classification and segmentation module with the backbone selected from ResNet‐101. Compared with existing neural networks (AlexNet, GoogLeNet, VGG16, and ResNet‐101), ResNet‐101‐segmentation improved the detection of Carolina geranium, catchweed bedstraw, mugwort and speedwell from 78.27% to 98.17%, from 79.49% to 98.28%, from 67.03% to 96.23%, and from 75.95% to 98.06%, respectively. The novel network exhibited high values of confusion matrices (>90%) when trained with sufficient data sets. CONCLUSION ResNet‐101‐segmentation demonstrated excellent performance compared with existing models (AlexNet, GoogLeNet, VGG16, and ResNet‐101) for detecting broadleaf weeds growing in alfalfa. This approach offers a promising solution to increase the accuracy of weed detection, especially in cases where weeds and crops have similar plant morphology. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤独的云朵完成签到,获得积分10
刚刚
葡萄猫发布了新的文献求助10
刚刚
静文完成签到,获得积分10
1秒前
1秒前
我是小张发布了新的文献求助20
2秒前
CipherSage应助静文采纳,获得10
3秒前
daimin完成签到,获得积分10
5秒前
充电宝应助Phil采纳,获得10
6秒前
6秒前
7秒前
善学以致用应助Cwx2020采纳,获得10
8秒前
fddd发布了新的文献求助20
8秒前
活泼一斩完成签到,获得积分10
8秒前
殷少完成签到,获得积分10
8秒前
799发布了新的文献求助10
10秒前
滴滴完成签到,获得积分10
11秒前
香蕉觅云应助隐形的谷南采纳,获得10
11秒前
Acc完成签到,获得积分10
12秒前
Q。。完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
caosenming完成签到,获得积分10
14秒前
14秒前
15秒前
千山孤风完成签到,获得积分0
15秒前
无聊的蚂蚁完成签到,获得积分10
16秒前
葡萄猫关注了科研通微信公众号
17秒前
18秒前
18秒前
bkagyin应助caosenming采纳,获得10
19秒前
20秒前
22秒前
Ava应助羊青丝采纳,获得10
22秒前
22秒前
22秒前
海云完成签到,获得积分10
23秒前
Lucky应助科研通管家采纳,获得20
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284775
求助须知:如何正确求助?哪些是违规求助? 3812184
关于积分的说明 11941428
捐赠科研通 3458760
什么是DOI,文献DOI怎么找? 1896854
邀请新用户注册赠送积分活动 945512
科研通“疑难数据库(出版商)”最低求助积分说明 849319