A literature review on satellite image time series forecasting: Methods and applications for remote sensing

系列(地层学) 遥感 领域(数学) 计算机科学 时间序列 数据挖掘 人工智能 特征(语言学) 数据科学 地质学 机器学习 语言学 古生物学 哲学 数学 纯数学 生物
作者
Carlos Lara-Álvarez,Juan J. Flores,Héctor Rodríguez,Rodrigo Lopez‐Farias
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:14 (3) 被引量:3
标识
DOI:10.1002/widm.1528
摘要

Abstract Satellite image time‐series are time series produced from remote sensing images; they generally correspond to features or indicators extracted from those images. With the increasing availability of remote sensing images and new methodologies to process such data, image time‐series methods have been used extensively for assessing temporal pattern detection, monitoring, classification, object detection, and feature estimation. Since the study of time series is broad, this article focuses on analyzing articles related to forecasting the value of one or more attributes of the image time‐series. The image time series forecasting (ITSF) problem appears in different disciplines; most focus on improving the quality of life by harnessing natural resources for sustainable development and minimizing the lethality of dangerous natural phenomena. Scientists tackle these problems using different tools or methods depending on the application. This review analyzes the field's leading, most recent contributions, grouping them by application area and solution methods. Our findings indicate that artificial neural networks, regression trees, support vector regression, and cellular automata are the most common methods for ITSF. Application areas address this problem as renewable energy, agriculture, and land‐use change. This study retrieved and analyzed relevant information about the recent activity of image time series forecasting, generating a reproducible list of the most pertinent articles in the field published from 2009 to 2021. To the author's best knowledge, this is the first review presenting and analyzing a reproducible list of the most relevant state‐of‐the‐art articles focusing on the applications, techniques, and research trends for ITSF. This article is categorized under: Algorithmic Development > Spatial and Temporal Data Mining Technologies > Machine Learning Technologies > Prediction
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助Albee采纳,获得10
1秒前
bkagyin应助勇敢兔兔采纳,获得30
2秒前
2秒前
kang给kang的求助进行了留言
3秒前
毕个业完成签到 ,获得积分10
3秒前
lin应助勇者小超人采纳,获得10
5秒前
汉堡包应助勇者小超人采纳,获得10
5秒前
5秒前
成就的绮烟完成签到 ,获得积分10
5秒前
张苶子完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
努力学习的小垃圾完成签到,获得积分10
9秒前
PPPPP星星完成签到,获得积分10
10秒前
11秒前
11秒前
陶醉的熊发布了新的文献求助10
11秒前
11秒前
田様应助123采纳,获得30
12秒前
12秒前
14秒前
由天与完成签到,获得积分10
14秒前
共享精神应助吴五五采纳,获得10
14秒前
15秒前
读博小菜菜完成签到,获得积分10
16秒前
科研通AI5应助花灯王子采纳,获得10
16秒前
英俊的铭应助Will采纳,获得10
17秒前
非而者厚应助maclogos采纳,获得10
17秒前
田様应助唠叨的宝马采纳,获得10
19秒前
19秒前
weirdo发布了新的文献求助10
19秒前
20秒前
韦思茹发布了新的文献求助10
20秒前
dudu完成签到 ,获得积分10
21秒前
陈乔乔完成签到,获得积分10
22秒前
24秒前
24秒前
菲尔发布了新的文献求助10
25秒前
xxxxxx发布了新的文献求助10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798859
求助须知:如何正确求助?哪些是违规求助? 3344607
关于积分的说明 10320917
捐赠科研通 3061108
什么是DOI,文献DOI怎么找? 1680042
邀请新用户注册赠送积分活动 806837
科研通“疑难数据库(出版商)”最低求助积分说明 763386