亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Urban waterlogging susceptibility assessment based on hybrid ensemble machine learning models: A case study in the metropolitan area in Beijing, China

北京 内涝(考古学) 大都市区 中国 随机森林 机器学习 环境科学 逻辑回归 计算机科学 集成学习 人工智能 地理 考古 生态学 湿地 生物
作者
Mingqi Yan,Jiarui Yang,Xiaoyong Ni,Kai Liu,Yijia Wang,Fang Xu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:630: 130695-130695 被引量:22
标识
DOI:10.1016/j.jhydrol.2024.130695
摘要

Urban waterlogging has emerged as a significant problem worldwide, particularly in densely populated cities. Accurate assessment of waterlogging susceptibility at the city scale is crucial for mitigating the risks associated with waterlogging and optimizing municipal design accordingly. However, existing studies on urban waterlogging susceptibility assessment have primarily relied on individual machine learning models. It is worthwhile to explore whether hybrid ensemble models have the potential to enhance the predictive performance. This research presents two hybrid ensemble machine learning models, namely Stacking and Blending, for assessing urban waterlogging susceptibility in the metropolitan area of Beijing, China. The performances of these models are compared with those of the widely used individual machine learning models. Evaluation of all the models is based on metrics such as Accuracy rate and Area Under Curve (AUC) score. The results demonstrate that the Stacking and Blending models consistently outperform the traditional machine learning models, such as Random Forest, Logistic Regression, etc. Through susceptibility analysis and model interpretation with SHAP method, this paper obtains several key findings that low lying areas may not necessarily be areas with severe waterlogging; urban roads and densely populated areas are highly susceptible to becoming high-risk areas for waterlogging in the study area. This study not only highlights the effectiveness of the Stacking and Blending models for urban waterlogging susceptibility assessment but also provides valuable insights for waterlogging mitigation strategies in urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
111111完成签到 ,获得积分10
12秒前
lztong完成签到,获得积分10
36秒前
38秒前
Scheduling完成签到 ,获得积分10
44秒前
1分钟前
蛋白积聚完成签到,获得积分10
1分钟前
满意访冬完成签到,获得积分20
1分钟前
安静的飞珍完成签到,获得积分10
2分钟前
小丸子和zz完成签到 ,获得积分10
2分钟前
帅气的安柏完成签到,获得积分10
3分钟前
Jessiehuang完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
hqh发布了新的文献求助10
4分钟前
英姑应助hqh采纳,获得10
4分钟前
4分钟前
4分钟前
NS完成签到,获得积分10
4分钟前
锂电阳离子无序完成签到,获得积分10
4分钟前
4分钟前
嘬痰猩猩完成签到 ,获得积分10
5分钟前
小脸红扑扑完成签到 ,获得积分10
5分钟前
小二郎应助Omni采纳,获得10
6分钟前
6分钟前
世界完成签到,获得积分10
6分钟前
背后晓兰完成签到 ,获得积分10
7分钟前
xingsixs完成签到 ,获得积分10
8分钟前
Cassie发布了新的文献求助10
8分钟前
neversay4ever完成签到 ,获得积分10
9分钟前
科研通AI5应助秋日思语采纳,获得10
9分钟前
9分钟前
Hello应助科研通管家采纳,获得10
9分钟前
浮游应助科研通管家采纳,获得30
9分钟前
wang发布了新的文献求助10
10分钟前
10分钟前
10分钟前
秋日思语发布了新的文献求助10
10分钟前
10分钟前
andrele完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173907
求助须知:如何正确求助?哪些是违规求助? 4363577
关于积分的说明 13585660
捐赠科研通 4212170
什么是DOI,文献DOI怎么找? 2310257
邀请新用户注册赠送积分活动 1309341
关于科研通互助平台的介绍 1256759