亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Urban waterlogging susceptibility assessment based on hybrid ensemble machine learning models: A case study in the metropolitan area in Beijing, China

北京 内涝(考古学) 大都市区 中国 随机森林 机器学习 环境科学 逻辑回归 计算机科学 集成学习 人工智能 地理 考古 生态学 湿地 生物
作者
Mingqi Yan,Jiarui Yang,Xiaoyong Ni,Kai Liu,Yijia Wang,Fang Xu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:630: 130695-130695 被引量:15
标识
DOI:10.1016/j.jhydrol.2024.130695
摘要

Urban waterlogging has emerged as a significant problem worldwide, particularly in densely populated cities. Accurate assessment of waterlogging susceptibility at the city scale is crucial for mitigating the risks associated with waterlogging and optimizing municipal design accordingly. However, existing studies on urban waterlogging susceptibility assessment have primarily relied on individual machine learning models. It is worthwhile to explore whether hybrid ensemble models have the potential to enhance the predictive performance. This research presents two hybrid ensemble machine learning models, namely Stacking and Blending, for assessing urban waterlogging susceptibility in the metropolitan area of Beijing, China. The performances of these models are compared with those of the widely used individual machine learning models. Evaluation of all the models is based on metrics such as Accuracy rate and Area Under Curve (AUC) score. The results demonstrate that the Stacking and Blending models consistently outperform the traditional machine learning models, such as Random Forest, Logistic Regression, etc. Through susceptibility analysis and model interpretation with SHAP method, this paper obtains several key findings that low lying areas may not necessarily be areas with severe waterlogging; urban roads and densely populated areas are highly susceptible to becoming high-risk areas for waterlogging in the study area. This study not only highlights the effectiveness of the Stacking and Blending models for urban waterlogging susceptibility assessment but also provides valuable insights for waterlogging mitigation strategies in urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jyy完成签到,获得积分10
2秒前
Flex完成签到,获得积分10
31秒前
xxx完成签到,获得积分10
49秒前
58秒前
饱满的新之完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
周二w完成签到,获得积分10
1分钟前
李健应助糊涂的清醒者采纳,获得10
1分钟前
Iso完成签到,获得积分10
1分钟前
1分钟前
1分钟前
聂白晴完成签到,获得积分20
1分钟前
1分钟前
聂白晴发布了新的文献求助10
1分钟前
英姑应助11采纳,获得10
2分钟前
思源应助11采纳,获得10
2分钟前
田様应助11采纳,获得10
2分钟前
小蘑菇应助11采纳,获得10
2分钟前
盛事不朽完成签到 ,获得积分10
2分钟前
Lucas应助Sarah采纳,获得10
2分钟前
2分钟前
tyx发布了新的文献求助10
2分钟前
周二w发布了新的文献求助20
2分钟前
JamesPei应助Marciu33采纳,获得10
2分钟前
2分钟前
2分钟前
黑球发布了新的文献求助10
2分钟前
2分钟前
纯情的寻绿完成签到 ,获得积分10
2分钟前
Sarah发布了新的文献求助10
2分钟前
黑球完成签到,获得积分10
3分钟前
Sarah完成签到,获得积分10
3分钟前
bc应助科研通管家采纳,获得20
3分钟前
3分钟前
zhang完成签到,获得积分10
4分钟前
科研通AI2S应助zhang采纳,获得10
4分钟前
tyx发布了新的文献求助10
5分钟前
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244162
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483